| | a prospect of a thrilling
onmsyania Qe O G
Pennsylvania

These slides will appear at
Wwww.physics.upenn.edu/~pcn

YOUR PATH IS ARDUOUS BUT WILL
BE AMPLE REWARD ING,

© If your desires are not exiravag-
ant they will be granted.

Scientific animation with Python

Story-telling with time

http://www.physics.upenn.edu/~pcn

The best

The best questions are ones that you ask yourselt.
The best images, still or animated, are ones you make for yourself.
Borrowing animations from Wikipedia only takes you so ftar!

The goals today are
* Show what is possible and why you may want it.
* Help you get started with one of a menu of Challenges.

What's the big deal?

‘echnically there's no big deal. A video is a bunch of still frames presented in succession at over
10/second (looks smoother it it's over 25/second).

But psychologically it's a big deal: We process stories as narrative, with plots.

We'll see how you can just get Python to spit out a lot of individual frames, then show them to
you at a chosen rate.

But you'll also want to share your joy — in a presentation; in the supplement to your big article;
on social media; etc. For this you need to stitch them together into a file in one of the usual
formats, typically mp4 or m4a.

® You could make a video screenshot of Python playing your animation, e.g. with
screenshot.app. Usually poor resolution and wrong speed.

® Or you can emit individual frames and postprocess with ffmpeg, QuickTime, iMovie, VLC,
ImagedJ, or another such free helper app.

® Today explore a third method: more convenient, once you get over the learning curve.

It's true that "play" can involve frustration.
Your assistant is not necessarily your friend.

But your presentations will never be the same!

o E S—

- - A e

B L T N —— -
-

N

—

M— e o —
& \\\‘x:‘rx\x\%\\b-??;?%b
\Q\‘\ = __‘\:‘:-_:‘ -

e >

From Terminal app (macOS) or Anaconda Prompt app (Windows):

S conda 1nstall ffmpeg
S which ffmpeg
/Users/pcn/anaconda3/bin/ffmpeg

From inside Jupyter:
3conda 1nstall ffmpeg

From Anaconda Navigator app:

{") ANACONDA NAVIGATOR

ﬂ Home

/- N N
1\Seard‘ Environments Q /) Instalbdd v Channels Update index... (Ffmpeg| X /)

ﬁEmwronment S e v T Description Version

FFmpeg o Cross-platform solution to record, convert and stream audio and

@ - 5 d 4.2.7
R Learning e e o video.

® 8@ Anaconda Navigator

{2 ANACONDA NAVIGATOR

A Home

-

~

\

7 f 7
| Search Environments Q) Not installed v] Channels Update index... | Ffmpeg X)

ﬁ Envirogments base (root) f ° Name v T Description Version

' ~~ Cross-platform solution to recerd, convert and stream audio and
N ffmpeg)

v ' anaconda3 ~ video. 4.2.2
g Learning g

an Community

ew ¢
Anaconda Toolbox

Superchargea

local notebooks.

Click the Toolbox
tile to Install.

Documentation

Anaconda Blog

y o ¥ m " 5 % &

- ' hing "ff " 1 pack l ABbl
Create Clone Import Backup Remove 1 package available matching "ffmpeg” 1 package selected y Clear

Part 1: Beginning

When | was an undergrad, my lab had an ancient computer that was maintained only
because it was the model on which Spacewar had been developed. Grad students would
come in with huge bags of potato chips and spend the evening. Why was it so
compelling? Well, something was moving on that screen. We are animals and we pay
attention to moving things.

In your own presentations, you can make a traditional graph and say "here horizontal

position represents time." But why not let TIME represent time? We process ideas as
narratives; a process unfolds over time.

In [3]:

Out[3]:

import numpy as np; import matplotlib.pyplot as plt

< X + H#

Generate plotting values

np.linspace(@, 2*xnp.pi, 200)
16 * np.sin(t)*%3
13 % np.cos(t) = 5 * np.cos(2*t) — 2 * np.cos(3*t) - np.cos(4xt)

Make the plot
plt.figure(figsize=(3,3))
plt.plot(x, y, 'r’',

plt.text(-1,0,'280")

Text(-1, 0,

10

10

'280")

linewidth=3

)

'd like a more impactful valentine, one that grows and

get f
but t
axes

10

10

shrinks over time. Right away, | face a problem: My assistant,
trying to please me, will rescale the axes in every frame so
that the heart fills the frame! Instead of a fluctuating heart, I'll

uctuating axes labels! There are various workarounds,

ne general-purpose insight is that | want to make the
once, then serially replace the contents always leaving

the axes unchanged.

Pythonic matters

plt.figure() creates a "figure object," i.e an "object" in the class figure, and makes it the "current figure."

Objects can contain other objects. For graphing, we want our figure object to "own" an "axes object."
plt.axes () creates such an object in the current figure and makes it the "current axes."
An axes object can in turn contain, e.g. the lines that we usually think of as the axes, but also tick marks, labels, as well as

data represented as symbols, curves, bars, etc.

plt.plot conveniently combines several operations:
create a figure object if none exists and make it "current figure" (otherwise use the existing current tigure).

add an axes object to the current figure object it none exists and make it "current axes."

add symbols and/or curves to that axes object to represent data.
revise the limits and labels as needed to accommodate that plot and any others already present.

But those operations can be unbundled for greater control.
In particular, we may wish to attach names to certain subobjects, so that we can go back and modity them by calling their

methods.

Thus, it my ax is the name of an axes object then its method my ax.plot() will draw a plot in that object, regardless ot
whether it is "current." It also returns a tuple containing the object(s) it created (lines, symbols, etc.); it we wish we can
assign a name to it. Later, we can then use that handle to change subobjects of the plot without completely redrawing it.

First set your
environment
to give "live
plots." In
Spyder, you
only need to
do thls once:

Making live plots on your screen (Sp

1= SRS S

’
i BN

| =

[

e P 1

s

T W T el

= e IrTri

s

- T I

* % 0 o @

e

v go

U @8

Appearance

Application

Completion and linting

Files

Help

History

IPython console
Python interpreter
Plugins

Profiler

Code Analysis
Run

Keyboard shortcuts
Status bar
Variable explorer

Working directory

Reset to defaults

Display Graphics Startup Bebugger Advanced settings

Support for graphics (Matplotlib)
Activate support

() Automatically load Pylab and NumP

Graphics backend

Decide how graphics are

Backend:

Inline backend

Decide how to render the figures created by this backend

Format: PNG

Resolution: 72.0

Width: 6

Automatic

Spyder (Python 3.11)

™ >

2rererence

ing to be displayed in the console. If unsure, please select Inline to put graphics
inside the console or Automatic to interact with them (through zooming and panning) in a separate window.

dpi

inches

Apply

Cancel

OK

: Jjupyter Untitled Last Checkpoint: 7 minutes ago (unsaved changes)

Making live plots on your screen

File Edit View Insert Cell Kernel Widgets

(Jupyter) + % A B 4 ¥ PRn B C »

In [4]: import mat Lib.pyplot as plt;
Hmatplotlib notebook

Do this every session: In [5]: plt.plot((e,1), (8,1)) /

Figure 1

1.0 F

0.8

I

0.6

0.4 F

Making live plots on your screen (Colab)

Do this every session:

lpip 1nstall i1pympl

from google.colab import output
output.enable custom widget manager ()
$matplotlib widget

Extracting the files you write (Colab)

from google.colab import files
bring output file to my (real) machine's Downloads folder:
files.download('filename.mp4 ')

[https://stackoverflow.com/questions/62275854/is-there-any-way-to-interact-
with-matplotlib-figures-in—-google-collaboratory/70482960#70482960]
[https://colab.research.google.com/notebooks/io.ipynb#scrollTo=vz-JH8T Uk2c]

heartThrob.py:

In Python, a function has

access to variables import_numpy as np; import matplotlib.pyplot as plt; plt.close("all")

defined in the from mat tlib import animation
#%% set up: step draws a frame and 1s called by FuncAnimation below:

surrounding code. def get_step(n):

Sticklers may preter to scale = np.abs(npwsin(2xnp.pix(n/30))) # this changes for each frame
transmit them via the # heart and my_Lline are_defined outside the function but available inside 1it:
"fargs" keyword in my_line.set_data(scalexheart[0], scalexheart[1])
. . #%% now begin the main code: set generic graph values:
FuncAnimation. . .
t"= np.linspace(@, 2%np.pi, 200)

heart = [16 * np.sin(t)**3, 13 * np.cos(t) — 5 % np.cos(2xt) - 2 %x np.cos(3xt) — np.cos(4xt)]
my fig = plt.figure()
my ax = plt.axes(x1lim=(-20,20), ylim=(-20,20)) #exactly the same in every frame

A Treturn | """create an empty curve, which will be replaced for every frame, and assign it
statement here is a name so that we can manipulate it. """
optional. (my_1line,) = my_ax.plot([], [], ww=3, color='red')

"""Now make the animation:
Tell FuncAnimation which figure window, what frame-drawing function to use, how

many /frames. blit is optional: """
my_movie = animation.FuncAnimation(my_fig, get_step, frames=60, blit=True)

Assigns a name to
the first (and only)
ine object in the
olot. That comma is

crucial to unpack the
returned tuple.

You can now just do a video screen shot of

the animation

Or, if you have instal

add

while Python is displaying it.

ed ftmpeg properly,

my movie.save(' filename.mpg')

to your code.

(ffmpeg is automatically available in Colab.)

There are use

available for t

("frames per second") and dpi ("c

inch").

ne save method, inc

ul optional arguments

uding fps

ots per

The resulting mpg, m4a, etc file is then
suitable for placing in a presentation (as |
have done here), posting to the Web, etc.

10 F

—10r

20

Challenges to think about

Challenge: Draw a fixed Lissajous figure, then an animated dot that traces it. Then do
something cool on you own initiative.

[This is the parametric curve x = P sin(Af), y = Q sin(B¥)]

Challenge: Draw a fixed epicycloid or hypocycloid figure, then an animated dot that traces it.
Then do something cool on you own initiative.

[This is the parametric curve x = sint + P sin(Af), y = cost + P cos(At) .]

More challenges

Challenge: Draw a progressively evolving planetary orbit with perihelion precession. That is,
the curve should be the open curve

r(@) = (1 + bcos(gh))™!
where ¢ is close to, but not exactly equal to, 1.

Moreover, trace out the curve at variable speed determined by angular momentum
conservation: d9/dt = 1/r(0)>.

Notes: Things have been nondimensionalized by convenient units of time and space. The
value of b controls the eccentricity (b = 0 means circular orbit, so don't use that value).

20
15 4

Traveling waves (sound .

in air or light in vacuum):

_15 -

-20

Challenge: make a delta function out of cosine waves. Let each one evolve via the
Schrodinger equation, and thus see how that delta wavepacket spreads.

Actually, forget about the SE: All you need to know is that each component wave has
frequency related to its wavenumber via @ = k*. And your starting superposition is a
bunch of cosines all with equal weight (the Fourier transtorm of a delta function).

[Thus the real part of the wavefunction is f(x, 1) = 2 cos(kx + k*t) where k ranges over,
say, =50, -49.8, -49.6,..., +50.]

10

15

20

Time evolution of a distribution

Molecular diffusion involves the spread of a distribution. It's instructive to look at the
randomness in a single instance. But instead of a single histogram at final time, why
not make a video of the time development of the histogram?

myfig = plt.figure() # set up one invariant axes for all frames
movie ax = plt.axes(xlim=(-1,Nbins+l), ylim=(0,Nwalk/2)) # stays constant over all frames
my bars = movie ax.bar(range(Nbins), binpops[:,0]) # first frame

Each bar is a separate object;
<< blah blah, create binpops[which bin, which time] >> my_bars is an array of them all.

def get step(n):

for i in range(Nbins): To animate bar plot, in each frame
my bars[i].set_height(binpops[i,n]) :
| - reset the array of bar heights.

Random walkers in potential trap

The distribution spreads at first, then
stops spreading. It also migrates, slowly, 25
eventually becoming centered on the

bottom of the potential energy well
(x=50).

150 [

population

100
A movie object returned by

FuncAnimation contains a "save'
method. °0

This one line renders the animation and

writes it to a file for use elsewhere: 0 | | | ! -
0 20 40 60 &0 100

my movie.save(harmonicRW.mp4', fps=35)

=

Brownian in a trap: Details

myfig = plt.fiqure() # set up one invariant axes for all frames
movie_ax = plt.axes(xlim=(-1,Nbins+1), ylim=(0,Nwalk/2)) # must stay constant over many frames
binpops = np.zeros((Nbins,Nstep)) #history of histogram
half = Nwalk//2 5 10
binpops[3xNbins//4,0] = half
binpops [-1+3*Nbins//4,0] = Nwalk - half 1!
my_bars = movie_ax.bar(range(Nbins), binpopsl[:,0]) # first frame
#%%
for time in range(1,Nstep):
temp = np.zeros(Nbins) o}
temp[1] = binpops[0,time-1] #handle left edge separately: all bounce
temp[-2] = binpops[-1,time-1] #handle right edge separately 1
for xbar in range(1, Nbins-1): # exclude ends which were handled separnately
Pplus = (1 - (xbar — Nbins//2)/400)/2
m = brn(binpops[xbar,time-1], Pplus) # partition walkers
temp [xbar+1] += m
temp[xbar-1] += binpops[xbar,time-1] - m
binpops[:,time] = temp
if temp.sum() != Nwalk: print("oops", time, binpops.sum()) #should never happen but check

0
0

1 1 1 1
20 10 60 80 100

def qge ~p (r
for 1 in range(Nbins): ,
my bars[i].set _height(binpops[i,n]) How to animate bar p\ot

Another challenge

Challenge: simulate Ehrentest's Fleas, and display the results as an animated bar

chart. Then do something cool on you own initiative.
For example: Two dogs. 300 fleas. Initially all fleas are on dog #0. On each time step

one randomly-chosen tlea will switch dogs.

Second visualization: The Swarm

This time, compute the actual trajectories of just 20 walkers. Release the walkers at a variety

of initial positions, say, evenly spaced atx =2, 7, 12, ... 97. Where do they end up?

myfig = plt.figure(figsize=(6,1)) # set up one invariant axes for all frames
movie ax plt.axes(xlim=(-1,Nbins+1)) # must stay constant over many frames
my gnats movie ax.scatter(trajects[:,0], np.zeros(Nwalk))

<< blah blah, create trajects[which walker, which time] >>

def get step(n):
my gnats.set offsets(np.vstack((trajects[:,n],np.zeros(Nwalk))).T)

To animate scatterplot, in each frame reset the xy values by supplying an array with 20 rows and two columns.

Finally, let's distinguish each walker by giving each its own color. There are various ways to do
this. [Hint: Check the documentation for scatter for its keyword argument color.]

The walkers never stop getting transiently pushed out to large excursions.

0.050
0.025 [
0L00Fr® © ® O ¢ ® ¢ 6 6 o & o ¢ o o

0.025

0.050 l l ! | l
0 20 40 60 80 100

=

Raster=bitmap=nheatmap Animation

() IR0

Animating heat maps

fig, ax = plt.subplots(l, figsize=3.6, 2.9))

image = axX.ilmshow(<<first frame>>.T) # to be changed each frame
mobilepoint, = ax.plot([],[]1, g*',—ms=3) # to be changed each frame
mytext = ax.text (6,4, 'variable label') # to be changed each frame
plt.xlabel(r'sxS\ [a.u.]') # fixed stuff

ax.text (6, 2.6, 'fixed label') # fixed stuff

def animate(k): # make video_frame k by changing what needs changing

image.set array(<<frame k>p.T)
mobilepoint.set data([p051t;un(k)], [0.]) |

return 1mage, mobllep01nt mytext # return changed objects

http://joshborrow.com/blog/posts/making research movies in python/

Challenge

Challenge: Instead, show 2D diffusion from a point (or
something more interesting) in such a representation:

c(t,X) = 1~ exp(—[|%[|/1)

Challenge: Instead, show the real part of a p orbital
in the xy plane:

ReW(r,p,t) = re”" cos(p — 1)

Challenge: The same, but this time as a surface (VRN
plot.

Usetful shortcut i

-__,--_

—1] 5 ----"'}‘--__

-10 _ T
t = np.linspace(0, 5xnp.pi, 101) # define parameter for parametric plot T

ax.plot3D(t * np.cos(t), t * np.sin(t), t) # generate 3D plot

onward to animation

"HHEasy matplotlib animation.
https://github.com/jwkvam/celluloid/blob/master/celluloid.py :"""

from celluloid import Camera

fig = plt.fiqure()

ax = fig.add_subplot(111, projection='3d')# create 3D plotting object attached to figure
ax.set_aspect('equal') # distortion? no thanks

camera = Camera(fig)

for thist in t:
ax.plot3D(t * np.cos(t), t * np.sin(t), t, 'b") # same in every fram
ax.plot3D([thist * np.cos(thist)], [thist % np.sin(thist)], [thist], 'or')
camera.snap()

animation = camera.animate(interval=100, blit=True)

The best

The best questions are ones that you ask yourself.
The best images, still or animated, are ones you make for yourself.

Go ahead.

A STUDENT'S GUIDE TO

PYTHON

FOR PHYSICAL MODELING
SECOND EDITION

JESSE M. KINDER
PHILIP NELSON

e
count = U

count < max i1terations:

X,y = (%0 + x*x - yxy, yv0 + Z2xxxy)

<-- Princeton Univ Press, August 2021

Pine, D J. Introduction to Python for science and
engineering. CRC Press 2019.

J W-B Lin, H Aizenman. E M Cartas Espinel,
K Gunnerson, and] Liu, Introduction to
Python programming for scientists and
engineers. Cambridge Univ. Press 2022.

C Hill, Learning scientific programming with
Python. Cambridge Univ. Press 2020.

THE CHALLENGES:

Draw a fixed Lissajous figure, then an animated dot that traces it.
Draw a fixed epicycloid or hypocycloid figure, then an animated dot that traces it.
Draw a progressively evolving planetary orbit with perihelion precession.

Make a delta function out of cosine waves. Let each one evolve via the Schrodinger equation, ana
thus see how that delta wavepacket spreads.

Simulate Ehrenfest's Fleas, and display the results as an animated bar chart.

Show 2D diffusion from a point as an animated heatmap.

Show the real part of a p orbital in the xy plane as an animated heatmap. Or show the real part of a
o orbital in the xy plane as an animated surface plot.

Part 2: Vistas

Some more use cases from my own research and teaching may give you ideas of your own.

® More stories about Brownian motion

® Story about adaptation in chemotaxis

® Stories about 3D objects in space

® Ray tracing for that meme-worthiness

® Flectromagnetic radiation by accelerating charge.

nmesh = 500

, , , tmin = —-np.p1
Exporting animation by {128 = 7P
writing many still images 9t = -1°
def x(i):
Here is a method that makes no use return 2.x(i/nmesh) - 1.0

of matplotlib.animation: def y(j): return 2.x(j/nmesh) - 1.0
values = np.zeros((nmesh,nmesh))
nframe = 0
for t in np.arange(tmin,tmax,dt):
nframe += 1
for i in range(nmesh):
for j in range(nmesh):
values[i,j] = np.sqrt(x(i)*x2 + y(j)**x2/(np.sin(t)+1.1))
plt.imshow(values.T, cmap='hot', interpolation='nearest', origin='lower")
plt.text(20, 50, 't='+format(t,'.2f"))
plt.savefig('rasterMovie'+format(nframe, '05d')+"'.png'); plt.close('all")

hen use an external helper app to postprocess the resulting image files-For example, Anaconda users can install FFmpeg
via the Anaconda Navigator app, or by
$ conda install ffmpeg (Windows: Can isste this command in Anaconda Prompt app.) (Mac: Use the Terminal app.)

Then use it:
$ ffmpeg -1 rasterMovie%05d.png -pix fmt yuv420p rasterMovie.mp4

In case of error, may need (see https://stackoverflow.com/questions/20847674/ffmpeg-1libx264-height-not-divisible-by-2)
S ffmpeg -i rasterMovie%05d.png -pix fmt yuv420p -vf "pad=ceil(iw/2)*2:ceil(ih/2)*2" rasterMovie.mp4

from matplotlib.animation import FuncAnimation

" nmesh = 500
EXpOrtlng tmin _np_pi
tmax np.pi

animation by gm0

all_times = np.arange(tmin, tmax, dt)

‘ In kl N g F Fm peg ’ég]’ga)l(?nil;r:\ber_of_f rames = len(all_times)

return 2.x(i/nmesh) - 1.
def y(j): return 2.x(j/nmesh) - 1.

to Python.

values = np.zeros((total _number_of frames, nmesh, nmesh))
nframe = -1
for t in all _times:

nframe += 1

for i in range(nmesh):

for j in range(nmesh):
values[nframe,i,j] = np.sqrt(x(i)*xx2 + y(j)*x2/(np.sin(t)+1.1))

theTop = values.max(); theBot = values.min()

def animate(frame):

Animation function.
global values, 1image
image.set_array(values[frame].T)
return 1image

animation = FuncAnimation(fig, animate, np.arange(total_number_of_frames),
interval=1000 / 25)

animation.save('"rasterMovie2.mp4", dpi=nmesh)

http://joshborrow.com/blog/posts/making research movies in python/

Boring kinetics

"""Description: demoThreestates.py Gillespie simulation of A<-->B<-->C model"""
import numpy as np; import matplotlib.pyplot as plt; plt.close('all'’)
from numpy.random import random as rng
"""Three states defining the cols of stoichiometry matrix:
0 =A; 1 =B; 2 =2°¢C
Four reactions, all first-order, defining the four rows of stoichometry matrix:
0 = A-->B; 1 = B-->A; 2 = B-->C; 3 = C-->B e

stoich = np.array(([-1,1,0], [1,-1,0], [O,-1,1], [0,1,-1]]) # each row sums to O

rate constants:

ks = np.array([([(1,o0,01, 1(0,0.2,01, 10,1,01, [(0,0,0.2]]) # only one entry in each row nonzero
Mtot =

40 # total number of molecs is constant
Ntrans = 250 # number of steps to simulate

pops = np.zeros((Ntrans+l, 3)) # allocate for populations in states A, B, C
pops[0, 0] = Mtot # initialize
ts = np.zeros(Ntrans+l) # allocate

40 ‘

35

rxnchooser = rng(Ntrans) a0 L
timechooser = rng(Ntrans)
25 -
for j i1n range(Ntrans):
propens = np.sum(pops[j,:]1*ks, axis=1) # propensities for each rxn 20 -
norm = propens.sum() # prob/time for anything to occur
breakpoints = np.cumsum(propens/norm) or !
which event = np.searchsorted(breakpoints, rxnchooser[]]) Al

ts[j+1] = ts[j] - np.log(timechooser[j])/norm

pops[j+1] = pops[j] + stoich[which event,:] 10F “\\
T

plt.figure(figsize=(3,3))
plt.plot(ts, pops) ok

plt.legend(('A','B','C")) l l
plt.xlabel('time [s]')

Kinetics as a thrilling story

Upgrade it to make a dancing bar-chart. To get started, initialize

with
my bars = movie ax.bar(np.arange(0,3), np.zeros(3))
Then, in the animation function, modity the bars on each frame

population
NN W
S wt O

(-
t

using
for 1 1n range(3):
my bars[i].set height(h[i,n])

where h is the result from your simulation.

Populations of the three species ultimately
equilibrate to the relative values predicted by the
Boltzmann distribution, but they never stop
fluctuating, and the fluctuations are big if the total
numbers are small.

Boring ODEs

from mpl toolkits.mplot3d import Axes3D
param = [50, 0, 0.2, 2]
Initial conditions.
y0 = [1.5, 0.5, 1, 1.5, 2, 2]
Set number of points and frames to use, frame rate.
num = 200
max frames = 80
rate = 20
Times at which solution to ODE will be evaluated.
times = np.arange(0, num)
Function to use with odeint: dy/dt = F(y,t)
def repressilatorVF(y, t):
input: y = array of 6 dynamical variables
returns: vector field VF of derivatives

VF = np.zeros(6)

VF[0] = -y[0] + param[0]/(l.+y[5]**param[3])+ param]
VF[1] = -y[1] + param[0]/(l.+y[3]**param[3])+ param]
VF[2] = -y[2] + param[0]/(l.+y[4]**param[3])+ param]
VF[3] = -param[2]*(y[3]1-Y[0]);

VF[4] = -param[2]*(y[4]1-Y[1]);

VF[5] = -param[2]*(y[5]-Y[2])

return VF
#%% Solve the ODE.
y = odeint(repressilatorVF, y0, times)

-

25

20

15

10

J U U

1
0 25 50 75 100 125 150 175 200

Thrilling ODEs

6) E’)

Make some sort of 3D animated line or point plot of your own (maybe an
explicit function, not the solution to an ODE). This time, the key is that

you must create the axes with

ax3d = plt.figure().add subplot(projection = '3d')

... then initialize the moving point:

my point, = ax3d.plot([], [1, []l, 'ro', ms=9)

... then in the rendering function:

my point.set data 3d((y[now, 0],), (y[now, 1],), (y[now, 2],))

Falling oft a clift

0.10 =
\

e

0.08 -

0.06 -

[7(x)

0.04 -

QD21 \

0.00 =1 | L l 1 \

The walker is not “trying to get out.” |t doesn’t even “know"” that there is a way out.

The walker is not “creeping toward the exit.” It's just blundering around, and eventually it
stumbles upon the exit. Meanwhile it often “wastes” lots of time on excursions in the “wrong”
direction.

Brownian in a trap: The movie

x/Ax

The walker is not "trying to get out.” It doesn’t even “know” that there is a way out.

The walker is not “creeping toward the exit.” It's just blundering around, and eventually it

stumbles upon the exit. Meanwhile it often “wastes” lots of time on excursions in the “wrong”
direction.

https://www.physics.upenn.edu/biophys/PMLS2e/Media/brownianTrapSim/escapeTraj.mp4

https://www.physics.upenn.edu/biophys/PMLS2e/Media/brownianTrapSim/escapeTraj.mp4

lsomerization as a double well

3.0

2.0

U(z)/kgT

1.0 F

0.0] e |]] 1 l
0 20 40 60 80 100
x/Azx

Adaptation in chemotaxis

[Ligand] = [0. 50. 0.]uM

22.5 F
20.0
s
3
+< 175 F
—
g [Ligand] = [0. 50. 0.]uM
3
= 15.0 1.0 |
=<
>§ \
=
S 125 F
-
g 0.8 F
10.0
7.5+ _g 06k
=
2
5.0 F 3
1 1 1 1 1 %
0.0 0.5 1.0 1.5 2.0 GS) 0.4 F
time(s| x10°
0.2 F
0.0 F
| | | | |

0.0 0.5 1.0 1.5 2.0
time|s| x10°

Story apbout adaptation in chemotaxis

Blue=high activity; red=low; step from 0.0 to 50.0

200 [

175

150

125

population

R N——— ¥ NI ——
0 10 20 30 40

methylation level

Stories about 3D objects

$ conda install conda-forge::vpython

Just a few lines of code succeed in reproducing realistic behavior:
See code flipper.ipynb.

Courtesy Adam J Simon; see Adam Simon and Albert Libchaber.
Escape and synchronization of a Brownian particle. Phys. Rev. Lett. 68, 3375 (1992)
https://www.physics.upenn.edu/biophys/PMLS2e/Media/brownian/BeadJump.m4v

https://www.physics.upenn.edu/biophys/PMLS2e/Media/brownian/BeadJump.m4v

Ray tracing for that meme-worthiness

VPython can export PovRay files; then free PovRay app can render them
with ray-tracing; then ffmpeg can stitch the frames into a video.

Chen, K. Y., Zuckerman, D. M., & Nelson, P. C. (2020). Stochastic simulation to
visualize gene expression and error correction in living cells. The Biophysicist,

1(1), Art. 1. https://doi.org/10.35459/tbp.2019.000101. Code:
https://github.com/NelsonUpenn/PNelson code

{=-1.00

® Bremsstrahlung

0.2

0.0

—0.2

—-0.4

-0.4 —0.2 0.0 0.2 0.4

Bremsstranlung

Lower: World-line of a
particle in uniform motion
along x that rapidly comes to
a stop.

Upper: Resulting electric fielo
ines.

y [a.u.]

3.0

1.5 F

2 \

1.0
0.0 . .

2.0

1.5 F

1.0

0.0

—0.5

—1.0

Attack of the flying
pbananas

A circular loop of wire in the
plane perp to the screen pierces
the screen at the black dot.
(There is a mirror-image to the
left of this figure.)

Blue curves are electric field
ines resulting when alternating
current flows in the loop.

_') =

