
Physics 230
Summary of Results from Lecture Week of September 8

Pressure is force per unit area, d~F = �pd ~A, where the direction of ~A is outward along
the surface normal.

The compressibility of a 
uid k = �(1=V )@V=@p. k = 1=p for an ideal gas, but is much
smaller for ordinary liquids, which can be regarded as approximately incompressible
(k � 0).

Pressure variation in a column of incompressible liquid p(z) = p0 + �g(h� z) where
h is the height of the column. The gradient of the pressure gives the force per unit

volume ~f = �rp. The volume integral of
R
V
~f dV is the hydrostatic force on the

material in the enclosed volume.

Pascal's principle: An external pressure is transmitted undiminished to all parts of a

uid in equilibrium. Note that this is a statement about the pressure, not the force.

Archimedes principle : The bouyant force on an object in a 
uid is the weight of the
excluded 
uid.

Week of September 13

Force on curved surface: The force from a 
uid with (constant) pressure p on a

hemisphere of radius R is ~F =
H
S
pd ~A = �pR2. In general, if the pressure is constant,

this force depends only on the cross sectional area perpendicular to the line of action
of the force.

Divergence Theorem: For any vector �eld ~u(~r), the 
ux of ~u through a closed surface

S is
H
S
~u �d ~A =

R
V
~r�~u dV . This means the total 
ow of ~u through the closed surface

is the sum of the net 
ows from each point (aka the divergence of ~u) contained in the
volume bounded by the surface. (Worked example: a calculation of the Archimedes
force from the pressure of a 
uid at the boundary of an immersed object).

Surface Tension: The surface energy of a 
uid is Us = 
A where A is the surface area
and 
 is the surface tension. [
] = J=m2 = N=m. The latter is useful for formulating
the surface tension force using the contact \line".

Equation of Continuity: For a steady 
ow bounded by a container of varying cross
sectional area A, the volume 
ow rate � = vA is constant.

Equation of Motion: The force density ~f = �@~v=@t + �(~v � ~r)~v, where the second

term is called the \convective derivative." For steady 
ow we have ~f = �(~v � ~r)~v. In
these expressions ~v is the average velocity of all the particles found in a �xed volume
element of the 
uid.

Note: for steady 
ow in a circular channel (~v�~r)~v = �(v2=r)r̂ in each volume element.
This gives the net \centripetal acceleration" of the particles in the volume element.
Since the 
ow is steady @~v=@t = 0.

Bernoulli's Law: For steady, incompressible and irrotational 
ow, (1=2)�v2+�gz+p =
constant. This is the work energy theorem for steady 
ow in a 
uid.



Week of September 20
Torricelli's Law: The 
ow velocity from a liquid column of height h is the free fall
velocity v =

p
2gh.

The viscous force transmitted across a surface A of a 
owing liquid is F=A = � _"
where _" is the strain rate and � is the viscosity.

Poiseuille's Law: The 
ow velocity of a viscous 
uid in a circular pipe with radius R
and length ` is nonuniform

v(r) =
�p

4�`

�
R2 � r2)

�
(1)

and the volume 
ow rate is proportional to R4

� =
�R4�p

8�`
(2)

Stokes' Law: A sphere of radiusRmoving at velocity v relative to a 
uid with viscosity
� experiences a viscous drag force Fv = 6��Rv.

Week of September 27
The pressure from a gas on the walls of its container is calculated from kinetic theory
p = 2nhKi=3 where n is the number of particles per unit volume and hKi is the mean
kinetic (translational) kinetic energy. This gives a microscopic basis for the ideal gas
equation of state pV = NkT = NmRT where k is Boltzmann's constant, and R is
the gas constant.

Two Equilibria: Mechanical equilibrium between two otherwise isolated systems that
are free to exchange volumes is established when the pressures are equal. Thermal
equilibrium between two systems that can exchange energy is established when the
temperatures are equal.

Heat I: When two otherwise isolated systems at di�erent temperatures are in thermal
contact, heat 
ows from the high temperature to low temperature system. This is a
nonequilibrium state. Warning: do not confuse temperature and heat.

Heat II: The heat capacity of an object is the ratio of the heat required to raise
the temperature by �T to the temperature change, C = Q=�T in the limit that
�T ! 0. The heat capacity is an extensive quantity that is proportional to the total
number of particles in the system. It is useful to re-express this as a speci�c heat
c = C=N or a molar heat capacity cm = C=Nm. For compressible states (like a gas)
we need to specify the thermodynamic state of the system while the heat is added, by
distinguishing between the speci�c heats at constant volume and at constant pressure.

Speci�c Heats for Ideal Gases For a monatomic ideal gas, only the translational mo-
tions contribute to the thermal energy so that the molar heat capacity cmv = 3R=2
where R is the universal gas constant. By the equipartition theorem each \thermally
accessible" degree of freedom contributes kT=2 to the internal energy so that, for
example, an ideal diatomic gas has a molar heat capacity cmv = 5R=2. In general the
heat capacity can depend on the temperature since at high temperature more internal
motions become thermally accessible.



Week of October 4
Heat III: The rate of 
ow of heat _Q through a rectangular parallepiped of cross
sectional area A and width d is

_Q =
kA�T

d
(3)

where k is the thermal conductivity, and �T is the temperature di�erence across the
width of the parallelpiped.

Three Maxwell Distributions: For a one dimensional ideal gas, the velocity distribution
f1(vx) is

f1(vx) = n1

r
m

2�kT
exp(�mv

2
x

2kT
) (4)

where n1 gives the one dimensional density (number of particles per unit length).
f1(vx)�vx gives the number of particles per unit length with velocities between vx
and vx +�vx. For a three dimensional gas this generalizes to

f(vx; vy; vz) = n
�

m

2�kT

�3=2
exp(�m(v2x + v2y + v2z)

2kT
) (5)

where n is the three dimensional density (number of particles per unit volume).
The distribution of molecular speeds g(v) can be derived from this, giving

g(v) = 4�n
�

m

2�kT

�3=2
v2e�mv2=2kT (6)

g(v)�v gives the number of particles per unit volume with speeds between v and

v + �v. The most probable speed occurs when dg=dv = 0, so vp =
q
2kT=m. The

mean square speed hv2i is obtained by an average over this distribution

hv2i =
R
1

0 dv v2 g(v)R
1

0 dv g(v)
=

3kT

m
(7)

(Note: the proof of the last equality is assigned as a homework problem.)

Boltzmann Factor: In thermal equilibrium at temperature T the probability to �nd
a molecule in a state with energy E (note this is the sum of its kinetic and potential
energies) is proportional to the \Boltzmann factor" exp(�E=kT ). This means that in
equilibrium very high energy states E >> kT have exponentially small probabilities.

Useful Gaussian Integrals:Z
1

�1

exp(��x2) dx =
q
�=�

Z
1

0

exp(��x2)x dx = 1=2�
Z
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�1

exp(��x2)x2n dx = (�1)n dn
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r
�
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(8)



First Law of Thermodynamics: �U = Q +W where U is the internal energy, Q is
the heat 
ow to the system (Q < 0 is heat 
ow out and Q > 0 is heat 
ow in) and
W is the work done on the system. For a compressible system dW = �pdV .
More on Heat Capacities: Q = C�T , but for a compressible system, we need to
distinguish the thermodynamic state of the system while the heat is added. Thus CV

is the heat capacity at constant volume (= 3Nk=2 for an ideal monatomic gas) and Cp

is the heat capacity at constant pressure (= 5Nk=2) for an ideal monatomic gas. Any
quasistatic change of state can be reconstructed from combinations of in�nitesimal
constant volume and constant pressure changes of state. It is useful to de�ne the
dimensionless thermodynamic parameter 
 = Cp=CV .

State Functions A state function depends only on the equilbrium thermodynamic
state of a system, not its history. An example is the internal energy, which for an
ideal gas depends only on the temperature and the total number of molecules, i.e.
U(T ) = 3NkT=2 for an ideal monatomic gas of N atoms. The internal energy cannot
change in any cyclic process that returns the system to its initial equilbrium state.

Path Functions Heat added to/extracted from and work done to/by a thermodynamic
system in a quasistatic change of state can depend on the \path" that connects the
initial and �nal states. Thus the total work done on, and heat transferred to a
thermodynamic system in a quasistatic cycle can be nonzero.

Some Quasistatic Changes of State

Isothermal Compression/Expansion (Ideal Gas): pV = constant, �U = 0, W =
�NkT log(Vf=Vi), Q = NkT log(Vf=Vi).
Isobaric Compression/Expansion (Ideal Gas): �U = Q + W , W = �p�V, Q =
Cp�T .

Adiabatic Compression/Expansion (Ideal Gas): pV
 = constant (or TV
�1 = constant0),
Q = 0, �U = W = (pfVf � piVi)=(
 � 1).


