Physics 230
Summary of Results from Lecture
Week of September 8
Pressure is force per unit area, $d \vec{F}=-p d \vec{A}$, where the direction of \vec{A} is outward along the surface normal.
The compressibility of a fluid $k=-(1 / V) \partial V / \partial p . k=1 / p$ for an ideal gas, but is much smaller for ordinary liquids, which can be regarded as approximately incompressible ($k \approx 0$).
Pressure variation in a column of incompressible liquid $p(z)=p_{0}+\rho g(h-z)$ where h is the height of the column. The gradient of the pressure gives the force per unit volume $\vec{f}=-\nabla p$. The volume integral of $\int_{\mathcal{V}} \vec{f} d V$ is the hydrostatic force on the material in the enclosed volume.
Pascal's principle: An external pressure is transmitted undiminished to all parts of a fluid in equilibrium. Note that this is a statement about the pressure, not the force. Archimedes principle : The bouyant force on an object in a fluid is the weight of the excluded fluid.

Week of September 13
Force on curved surface: The force from a fluid with (constant) pressure p on a hemisphere of radius R is $\vec{F}=\oint_{\mathcal{S}} p d \vec{A}=\pi p R^{2}$. In general, if the pressure is constant, this force depends only on the cross sectional area perpendicular to the line of action of the force.

Divergence Theorem: For any vector field $\vec{u}(\vec{r})$, the flux of \vec{u} through a closed surface \mathcal{S} is $\oint_{\mathcal{S}} \vec{u} \cdot d \vec{A}=\int_{\mathcal{V}} \vec{\nabla} \cdot \vec{u} d V$. This means the total flow of \vec{u} through the closed surface is the sum of the net flows from each point (aka the divergence of \vec{u}) contained in the volume bounded by the surface. (Worked example: a calculation of the Archimedes force from the pressure of a fluid at the boundary of an immersed object).
Surface Tension: The surface energy of a fluid is $U_{s}=\gamma A$ where A is the surface area and γ is the surface tension. $[\gamma]=\mathrm{J} / \mathrm{m}^{2}=\mathrm{N} / \mathrm{m}$. The latter is useful for formulating the surface tension force using the contact "line".
Equation of Continuity: For a steady flow bounded by a container of varying cross sectional area A, the volume flow rate $\Phi=v A$ is constant.
Equation of Motion: The force density $\vec{f}=\rho \partial \vec{v} / \partial t+\rho(\vec{v} \cdot \vec{\nabla}) \vec{v}$, where the second term is called the "convective derivative." For steady flow we have $\vec{f}=\rho(\vec{v} \cdot \vec{\nabla}) \vec{v}$. In these expressions \vec{v} is the average velocity of all the particles found in a fixed volume element of the fluid.
Note: for steady flow in a circular channel $(\vec{v} \cdot \vec{\nabla}) \vec{v}=-\left(v^{2} / r\right) \hat{r}$ in each volume element. This gives the net "centripetal acceleration" of the particles in the volume element. Since the flow is steady $\partial \vec{v} / \partial t=0$.
Bernoulli's Law: For steady, incompressible and irrotational flow, $(1 / 2) \rho v^{2}+\rho g z+p=$ constant. This is the work energy theorem for steady flow in a fluid.

Week of September 20
Torricelli's Law: The flow velocity from a liquid column of height h is the free fall velocity $v=\sqrt{2 g h}$.
The viscous force transmitted across a surface \mathcal{A} of a flowing liquid is $F / \mathcal{A}=\eta \dot{\varepsilon}$ where $\dot{\varepsilon}$ is the strain rate and η is the viscosity.
Poiseuille's Law: The flow velocity of a viscous fluid in a circular pipe with radius R and length ℓ is nonuniform

$$
\begin{equation*}
\left.v(r)=\frac{\Delta p}{4 \eta \ell}\left(R^{2}-r^{2}\right)\right) \tag{1}
\end{equation*}
$$

and the volume flow rate is proportional to R^{4}

$$
\begin{equation*}
\Phi=\frac{\pi R^{4} \Delta p}{8 \eta \ell} \tag{2}
\end{equation*}
$$

Stokes' Law: A sphere of radius R moving at velocity v relative to a fluid with viscosity η experiences a viscous drag force $F_{v}=6 \pi \eta R v$.

