Physics 230

Summary of Results from Lecture

Week of September 8

Pressure is force per unit area, $d\vec{F} = -pd\vec{A}$, where the direction of \vec{A} is outward along the surface normal.

The compressibility of a fluid $k = -(1/V)\partial V/\partial p$. k = 1/p for an ideal gas, but is much smaller for ordinary liquids, which can be regarded as approximately incompressible $(k \approx 0)$.

Pressure variation in a column of incompressible liquid $p(z) = p_0 + \rho g(h - z)$ where h is the height of the column. The gradient of the pressure gives the *force per unit* volume $\vec{f} = -\nabla p$. The volume integral of $\int_{\mathcal{V}} \vec{f} \, dV$ is the hydrostatic force on the material in the enclosed volume.

Pascal's principle: An external pressure is transmitted undiminished to all parts of a fluid in equilibrium. Note that this is a statement about the pressure, not the force. *Archimedes principle* : The bouyant force on an object in a fluid is the weight of the excluded fluid.

Week of September 13

Force on curved surface: The force from a fluid with (constant) pressure p on a hemisphere of radius R is $\vec{F} = \oint_{S} p d\vec{A} = \pi p R^2$. In general, if the pressure is constant, this force depends only on the cross sectional area perpendicular to the line of action of the force.

Divergence Theorem: For any vector field $\vec{u}(\vec{r})$, the flux of \vec{u} through a closed surface S is $\oint_S \vec{u} \cdot d\vec{A} = \int_V \vec{\nabla} \cdot \vec{u} \, dV$. This means the total flow of \vec{u} through the closed surface is the sum of the net flows from each point (aka the *divergence* of \vec{u}) contained in the volume bounded by the surface. (Worked example: a calculation of the Archimedes force from the pressure of a fluid at the boundary of an immersed object).

Surface Tension: The surface energy of a fluid is $U_s = \gamma A$ where A is the surface area and γ is the surface tension. $[\gamma] = J/m^2 = N/m$. The latter is useful for formulating the surface tension force using the contact "line".

Equation of Continuity: For a steady flow bounded by a container of varying cross sectional area A, the volume flow rate $\Phi = vA$ is constant.

Equation of Motion: The force density $\vec{f} = \rho \partial \vec{v} / \partial t + \rho (\vec{v} \cdot \vec{\nabla}) \vec{v}$, where the second term is called the "convective derivative." For steady flow we have $\vec{f} = \rho (\vec{v} \cdot \vec{\nabla}) \vec{v}$. In these expressions \vec{v} is the average velocity of all the particles found in a fixed volume element of the fluid.

Note: for steady flow in a circular channel $(\vec{v} \cdot \vec{\nabla})\vec{v} = -(v^2/r)\hat{r}$ in each volume element. This gives the net "centripetal acceleration" of the particles in the volume element. Since the flow is steady $\partial \vec{v}/\partial t = 0$.

Bernoulli's Law: For steady, incompressible and irrotational flow, $(1/2)\rho v^2 + \rho gz + p =$ constant. This is the work energy theorem for steady flow in a fluid.

Torricelli's Law: The flow velocity from a liquid column of height h is the free fall velocity $v = \sqrt{2gh}$.

The viscous force transmitted across a surface \mathcal{A} of a flowing liquid is $F/\mathcal{A} = \eta \dot{\varepsilon}$ where $\dot{\varepsilon}$ is the strain rate and η is the viscosity.

 $Poiseuille\, `s\ Law:$ The flow velocity of a viscous fluid in a circular pipe with radius R and length ℓ is nonuniform

$$v(r) = \frac{\Delta p}{4\eta\ell} \left(R^2 - r^2 \right)$$
 (1)

and the volume flow rate is proportional to \mathbb{R}^4

$$\Phi = \frac{\pi R^4 \Delta p}{8\eta\ell} \tag{2}$$

Stokes' Law: A sphere of radius R moving at velocity v relative to a fluid with viscosity η experiences a viscous drag force $F_v = 6\pi\eta Rv$.