
Physics 230
Summary of Results from Lecture Week of September 8

Pressure is force per unit area, d~F = �pd ~A, where the direction of ~A is outward along
the surface normal.

The compressibility of a 
uid k = �(1=V )@V=@p. k = 1=p for an ideal gas, but is much
smaller for ordinary liquids, which can be regarded as approximately incompressible
(k � 0).

Pressure variation in a column of incompressible liquid p(z) = p0 + �g(h� z) where
h is the height of the column. The gradient of the pressure gives the force per unit
volume ~f = �rp. The volume integral of

R
V
~f dV is the hydrostatic force on the

material in the enclosed volume.

Pascal's principle: An external pressure is transmitted undiminished to all parts of a

uid in equilibrium. Note that this is a statement about the pressure, not the force.

Archimedes principle : The bouyant force on an object in a 
uid is the weight of the
excluded 
uid.

Week of September 13

Force on curved surface: The force from a 
uid with (constant) pressure p on a

hemisphere of radius R is ~F =
H
S
pd ~A = �pR2. In general, if the pressure is constant,

this force depends only on the cross sectional area perpendicular to the line of action
of the force.

Divergence Theorem: For any vector �eld ~u(~r), the 
ux of ~u through a closed surface

S is
H
S
~u �d ~A =

R
V
~r�~u dV . This means the total 
ow of ~u through the closed surface

is the sum of the net 
ows from each point (aka the divergence of ~u) contained in the
volume bounded by the surface. (Worked example: a calculation of the Archimedes
force from the pressure of a 
uid at the boundary of an immersed object).

Surface Tension: The surface energy of a 
uid is Us = 
A where A is the surface area
and 
 is the surface tension. [
] = J=m2 = N=m. The latter is useful for formulating
the surface tension force using the contact \line".

Equation of Continuity: For a steady 
ow bounded by a container of varying cross
sectional area A, the volume 
ow rate � = vA is constant.

Equation of Motion: The force density ~f = �@~v=@t + �(~v � ~r)~v, where the second

term is called the \convective derivative." For steady 
ow we have ~f = �(~v � ~r)~v. In
these expressions ~v is the average velocity of all the particles found in a �xed volume
element of the 
uid.

Note: for steady 
ow in a circular channel (~v�~r)~v = �(v2=r)r̂ in each volume element.
This gives the net \centripetal acceleration" of the particles in the volume element.
Since the 
ow is steady @~v=@t = 0.

Bernoulli's Law: For steady, incompressible and irrotational 
ow, (1=2)�v2+�gz+p =
constant. This is the work energy theorem for steady 
ow in a 
uid.



Week of September 20
Torricelli's Law: The 
ow velocity from a liquid column of height h is the free fall
velocity v =

p
2gh.

The viscous force transmitted across a surface A of a 
owing liquid is F=A = � _"
where _" is the strain rate and � is the viscosity.

Poiseuille's Law: The 
ow velocity of a viscous 
uid in a circular pipe with radius R
and length ` is nonuniform

v(r) =
�p

4�`

�
R2 � r2)

�
(1)

and the volume 
ow rate is proportional to R4

� =
�R4�p

8�`
(2)

Stokes' Law: A sphere of radiusRmoving at velocity v relative to a 
uid with viscosity
� experiences a viscous drag force Fv = 6��Rv.

Week of September 27
The pressure from a gas on the walls of its container is calculated from kinetic theory
p = 2nhKi=3 where n is the number of particles per unit volume and hKi is the mean
kinetic (translational) kinetic energy. This gives a microscopic basis for the ideal gas
equation of state pV = NkT = NmRT where k is Boltzmann's constant, and R is
the gas constant.

Two Equilibria: Mechanical equilibrium between two otherwise isolated systems that
are free to exchange volumes is established when the pressures are equal. Thermal
equilibrium between two systems that can exchange energy is established when the
temperatures are equal.

Heat I:When two otherwise isolated systems at di�erent temperatures are in thermal
contact, heat 
ows from the high temperature to low temperature system. This is a
nonequilibrium state. Warning: do not confuse temperature and heat.

Heat II: The heat capacity of an object is the ratio of the heat required to raise
the temperature by �T to the temperature change, C = Q=�T in the limit that
�T ! 0. The heat capacity is an extensive quantity that is proportional to the total
number of particles in the system. It is useful to re-express this as a speci�c heat
c = C=N or a molar heat capacity cm = C=Nm. For compressible states (like a gas)
we need to specify the thermodynamic state of the system while the heat is added, by
distinguishing between the speci�c heats at constant volume and at constant pressure.

Speci�c Heats for Ideal Gases For a monatomic ideal gas, only the translational mo-
tions contribute to the thermal energy so that the molar heat capacity cmv = 3R=2
where R is the universal gas constant. By the equipartition theorem each \thermally
accessible" degree of freedom contributes kT=2 to the internal energy so that, for
example, an ideal diatomic gas has a molar heat capacity cmv = 5R=2. In general the
heat capacity can depend on the temperature since at high temperature more internal
motions become thermally accessible.



Week of October 4
Heat III: The rate of 
ow of heat _Q through a rectangular parallepiped of cross
sectional area A and width d is

_Q =
kA�T

d
(3)

where k is the thermal conductivity, and �T is the temperature di�erence across the
width of the parallelpiped.

Three Maxwell Distributions: For a one dimensional ideal gas, the velocity distribution
f1(vx) is

f1(vx) = n1

r
m

2�kT
exp(�mv

2
x

2kT
) (4)

where n1 gives the one dimensional density (number of particles per unit length).
f1(vx)�vx gives the number of particles per unit length with velocities between vx
and vx +�vx. For a three dimensional gas this generalizes to

f(vx; vy; vz) = n
�

m

2�kT

�3=2
exp(�m(v2x + v2y + v2z)

2kT
) (5)

where n is the three dimensional density (number of particles per unit volume).
The distribution of molecular speeds g(v) can be derived from this, giving

g(v) = 4�n
�

m

2�kT

�3=2
v2e�mv2=2kT (6)

g(v)�v gives the number of particles per unit volume with speeds between v and

v + �v. The most probable speed occurs when dg=dv = 0, so vp =
q
2kT=m. The

mean square speed hv2i is obtained by an average over this distribution

hv2i =
R
1

0 dv v2 g(v)R
1

0 dv g(v)
=

3kT

m
(7)

(Note: the proof of the last equality is assigned as a homework problem.)

Boltzmann Factor: In thermal equilibrium at temperature T the probability to �nd
a molecule in a state with energy E (note this is the sum of its kinetic and potential
energies) is proportional to the \Boltzmann factor" exp(�E=kT ). This means that in
equilibrium very high energy states E >> kT have exponentially small probabilities.

Useful Gaussian Integrals:Z
1

�1

exp(��x2) dx =
q
�=�Z

1

0

exp(��x2)x dx = 1=2�Z
1

�1

exp(��x2)x2n dx = (�1)n dn

d�n

r
�

�Z
1

0

exp(��x2)x2n+1 dx = (�1)n dn

d�n

1

2�
(8)



First Law of Thermodynamics: �U = Q +W where U is the internal energy, Q is
the heat 
ow to the system (Q < 0 is heat 
ow out and Q > 0 is heat 
ow in) and
W is the work done on the system. For a compressible system dW = �pdV .
More on Heat Capacities: Q = C�T , but for a compressible system, we need to
distinguish the thermodynamic state of the system while the heat is added. Thus CV

is the heat capacity at constant volume (= 3Nk=2 for an ideal monatomic gas) and Cp

is the heat capacity at constant pressure (= 5Nk=2) for an ideal monatomic gas. Any
quasistatic change of state can be reconstructed from combinations of in�nitesimal
constant volume and constant pressure changes of state. It is useful to de�ne the
dimensionless thermodynamic parameter 
 = Cp=CV .

Week of October 18
State Functions A state function depends only on the equilbrium thermodynamic
state of a system, not its history. An example is the internal energy, which for an
ideal gas depends only on the temperature and the total number of molecules, i.e.
U(T ) = 3NkT=2 for an ideal monatomic gas of N atoms. The internal energy cannot
change in any cyclic process that returns the system to its initial equilbrium state.

Path Functions Heat added to/extracted from and work done to/by a thermodynamic
system in a quasistatic change of state can depend on the \path" that connects the
initial and �nal states. In particular the total work done on, and heat transferred to
a thermodynamic system in a quasistatic cycle can be nonzero.

Some Quasistatic Changes of State

Isothermal Compression/Expansion (Ideal Gas): pV = constant, �U = 0, W =
�NkT log(Vf=Vi), Q = NkT log(Vf=Vi).
Isobaric Compression/Expansion (Ideal Gas): �U = Q + W , W = �p�V, Q =
Cp�T .

Adiabatic Compression/Expansion (Ideal Gas): pV
 = constant (or TV
�1 = constant0),
Q = 0, �U = W = (pfVf � piVi)=(
 � 1). These formulas hold for a reversibly adia-
batic change of state (we refer to this change as fast but not too fast ).

Entropy: is a quantitative measure of the disorder of an equilibrium thermodynamic
state. It is an extensive quantity, proportional to the number of atoms/molecules in
a system. Disorder in this context is a logarithmic measure of the number of states
that store the total thermal energy U in equilibrium at temperature T . Entropy is a
state function, i.e. an equilibrium thermodynamic state has a de�nite entropy. For
example, the entropy of the ideal gas at temperature T , pressure p and volume V is

S = Nk log(U3=2V) + constant (9)

where the constant is called the chemical constant (it is independent of T and V).
Other formulas can be derived for other thermodynamic systems. The change of
entropy during a thermodynamic change of state depend only on the initial and �nal
states, and not on the history during the change of state. The change of entropy can
be evaluated by direct calculation from equation (9) (we call this the state function
method) or by evaluating the integral the heat formula



�S(a! b) =

"Z b

a

dQ

T

#
quasistatic

(10)

on any quasistatic (reversible) path that connects the states a and b. This latter
method is the classical de�nition of the change in entropy (it predates the statistical
interpretation.)

Second Law of Thermodynamics: Only processes with �Stot � 0 occur in thermo-
dynamic systems. To properly use this formula be sure to include the changes of
entropy of the reservoirs with which the system interacts!. Note that the entropy of
a single part of an interacting system (sometimes called a subsystem) can decrease
in a thermodynamic change of state (an example is the entropy change of a gas in
an isothermal compression). Reversible processes obey the equality �Stot = 0. In
practice there are no truly reversible processes, since every quasistatic change involves
many in�nitesimal departures from and relaxations back to equilibrium states (and
every such relaxation is a one way process where �S > 0).

Two adiabatic expansions. A reversibly adiabatic expansion has Q = 0, and using
the heat formula has �S = 0. This is called an isentropic change. An adiabatic
free expansion (for example breaking the partition between a con�ned gas and a
vacuum) involves the relaxation from an initial highly nonequilibrium state to a �nal
equilibrium state. This is an irreversible process that has �S 6= 0 despite the fact
that Q = 0. Notice that the heat formula cannot be applied (directly) to this process
since the system evolves through a sequence of nonequilibrium intermediate states to
which equation (10) is inapplicable.

Short course in Thermodynamics

(a) Understand the three step cycle: isothermal (slow) compression, reversible adia-
batic (fast but not too fast) expansion, and reheating at constant volume to return
to initial state.

(b) Understand the di�erence between the reversible adiabatic expansion and the
adiabatic free expansion (and be able to calculate the change of entropy for each.)

(c) Understand that a thermodynamic cycle can partially convert heat into work. No
cycle can completely convert heat into work. This is the Kelvin statement of the
second law of thermodynamics.

EÆciency of Thermodynamic Cycles The eÆciency of a cyclic thermodynamic process
is � = W=Qin where W is the net work done and Qin is the heat absorbed. The
optimum eÆciency is realized by a theoretical cycle called the Carnot cycle that
extracts heat from a high temperature reservoir at temperature Thigh does work and
discharges heat to a low temperature reservoir Tlow. The Carnot cycle is a reversible
cycle that absorbs heat only at its highest operating temperature and discharges
heat only at its lowest operating temperature. The Carnot cycle has an eÆciency
� = W=Qin = (Qin �Qout)=Qin = 1� Tlow=Thigh.

Week of November 1



Harmonic Oscillator Review The equation of motion for the free harmonic oscillator
with viscous damping is

m�s + b _s+ ks = 0 (11)

The solutions are most naturally represented by superpositions of the (in general)
complex solutions ~s / exp(pt) where

p� = � b

2m
�
vuut b

2m

!2
� k

m
(12)

For example, the motion of the undamped oscillator is represented

s(t) = ~aei!ot + ~a�e�i!ot = 2jaj cos(!ot� Æ) (13)

where Æ = arctan( _s(0)=!s(0)) and 2jaj =
q
s(0)2 + _s(0)2=!2o .

The solutions to the EOM are damped complex exponentials (these describe damped

oscillations) when b=2m <
q
k=m but are damped real exponentials (and thus not

oscillating) when b=2m >
q
k=m. In the strongly overdamped limit the slower decay-

ing exponential has a rate constant � k=b that does not depend on the mass. When
b = 2

p
mk the two roots of the characteristic equation p� are equal, and the solu-

tions are called critically damped. The critically damped solutions can be expressed
as combinations of two linearly independent solutions

s(t) = (A +Bt)e�bt=2m critically damped (14)

Driven Oscillations The equation of motion

M�s(t) + b _s(t) + ks(t) = kW (t) = kWo cos(!t) (15)

describes a damped oscillator whose motion is driven externally at frequency !, in
this case by harmonically displacing a wall to which a Hooke's law spring is attached.
After a transient period (the duration of the transients are determined by the damping
constant) the block oscillates at the same frequency as the drive, but shifted in phase

s(t) = So cos(!t� �) (16)

where So = !2oWo=
q
(!2o � !2)2 + !2
2 and � = arctan(!
=(!2o � !2)). When driven

at very low frequency ! << !o the oscillator moves in phase with the driving force
and at nearly the same amplitude. When driven at very high frequency ! >> !o the
oscillator moves out of phase with the driving force, with a small response limited by
its inertial mass. The largest response occurs at the resonant frequency ! = !o where
So=Wo = !o=
 � Q, so that Q gives the ampli�cation factor on resonance. The Q
factor also characterizes the rate of energy decay of a free oscillator: it is the number
of oscillations (measured in radians) for the mechanical energy in the free oscillator
to decay to 1=e of its initial value. The Q factor also characterizes the frequency



response of the driven oscillator: it gives the dimensionless full width Q = !o=�!
measured on the response curve at the points where the steady state amplitude is
reduced from its maximum value (on resonance) by a factor of 1=

p
2. A typical ball

and string pendulum has Q � 10 (although often used for discussion, it is not a
particularly good oscillator), while a tuning fork has Q � 104.

Week of November 8
Coupled Oscillators The coupled motions of the masses in the mass spring network
shown below can be represented as an expansion in the normal modes of the system.

K k K

M M

s1
s2

(1) motion with equal displacements of the two masses (equal amplitudes and in

phase) at a frequency !1 =
q
k=m.

(2) motion with antisymmetric displacments of the two masses (equal amplitudes,

but out of phase) at a frequency !2 =
q
3k=m.

Using these fundamental modes the motions of the masses can be reconstructed

s1(t) =
1

2
(A cos(!1t+ �) +B cos(!2t+ �))

s2(t) =
1

2
(A cos(!1t+ �)�B cos(!2t+ �)) (17)

where the constants A, B, � and � are determined by the initial conditions of the
motion. When the system is set into motion with an initial displacement of one of
the masses (say mass 1 with initial displacement C) the solutions are

x1(t) = C cos(�!t) cos(�!t=2)

x2(t) = C sin(�!t) sin(�!t=2) (18)

where �! = (!1 + !2)=2 and �! = !2 � !1. This determines the frequency of the
\fast" oscillation, and the \slow" modulation of the amplitude if !2 � !1. Since the
mechanical energy / the square of the oscillator amplitude, the energy oscillates at
twice the frequency of the displacements.

Coupled Oscillators as an Eigenvalue Problem The normal modes can be determined
as the solutions of an eigenvalue problem. Introducing a column vector X that gives
a �xed combination of displacements that evolve in time with a common time depen-
dence



X(t) =

0
B@ x1
x2
:

1
CA ept (19)

the equation of motion in matrix form is

�X(t) = p2

0
B@ x1
x2
:

1
CA ept =

0
B@ d11=M1 d12=M1 :::
d21=M2 d22=M2 :::

: : :::

1
CA
0
B@ x1
x2
:

1
CA ept (20)

where the dij are determined by the network of springs that couple the masses. This
EOM has nonzero solutions only if the determinant

Det

0
B@ �p2 + d11=M1 d12=M1 :::

d21=M2 �p2 + d22=M2 :::
: : :

1
CA = 0 (21)

The roots of this polynomial (it is of order 2N for a problem with N coupled masses)
give the (complex) rate constants p, and once these are known equation (19) is solved
for the amplitude ratios (e.g. x2=x1, etc.) for each mode of the system. The observed
motions of the masses are then given by a linear superposition of these fundamental
motions, with coeÆcients speci�ed by the initial conditions of the motion. Note that
there are 2N initial conditions required to specify the solution to the N particle
problem. (For example the two mass problem requires four constants, that could be
determined knowing the initial displacements and velocities of each of the masses.)

Continuum Limit for N Coupled Masses For N-coupled masses each of mass M with
average separation a and with each connected to its nearest neighbors by Hooke's Law
springs with spring constants K, the equations of motion are second order di�erence
equations

M�sn = Ksn�1 � 2Ksn +Ksn+1 (22)

Solutions that are slowly varying with the lattice index n can be obtained by passing
to the continuum limit sn ! s(na) � s(x) and satisfy the one dimensional wave
equation

M�s = Ka2
@2s

@x2
(23)

Similar EOM's describe the motion of small transverse oscillations of a stretched
string, and the small density 
uctuations in a gas contained in a narrow pipe, and
the transverse 
uctuations of the electric and magnetic �elds that are constrained to
vary only along a single direction in space, etc. For example the wave equation for
transverse displacements h(x; t) on a stretched string is

�h(x; t) =
T

�

@2h(x; t)

@x2
(24)



where T is the string tension and � is the mass per unit length.

Solution by Propagation (D'Alembert's method). In one dimension the solutions to the
wave equation are superpositions of the forward and backward propagating solutions

h(x; t) = f(x� vt) + g(x+ vt) (25)

where the �rst term on the right hand side gives a waveform of shape f that propagates
with no change of shape to the right, and the second term gives a waveform of shape
g that propagates with no change of shape to the left. The two components can be
isolated by studying the initial conditions speci�ed by h0(x; 0) = @h(x; 0)=@x and
_h(x; 0) = @h(x; t = 0)=@t. This gives the composition rule

f 0(x) =
1

2

�
h0(x; 0)� 1

v
_h(x; 0)

�

g0(x) =
1

2

�
h0(x; 0) +

1

v
_h(x; 0)

�
(26)

Equations (26) can be integrated to determine the two components f and g, and
this provides a complete solution to the one dimensional equation of motion. This
method is extremely powerful for problems in one dimensional wave motion, but not
generalize naturally to wave propagation in higher dimensions.

Solution by Separation of Variables The wave equation can also be solved by factoring
the space and time dependence of it's solutions h(x; t) = A(x)B(t). This leads to two
decoupled equations for the space and time factors that are linked by the "separation
constant" C

@2A(x)

@x2
=

�

T
CA(x) = �!

2

c2
A(x) = �k2A(x)

@2B(t)

@t2
= CB(t) = �!2B(t) (27)

The solutions are the periodic functions A(x) = Ao cos(kx+�) and B(t) = Bo cos(!t+
�). Thus the factored solution of the wave equation is

h(x; t) = Ho cos(kx + �) cos(!t+ �) (28)

Not all solutions of the wave equation can be expressed in separable (factored) form,
but sums of factored solutions can be used to construct a general solution to the wave
equation. This is the subject of the �rst homework exercise on problem set 10.

Week of November 29
Solution to the Wave Equation in a Fourier Series For a one dimensional string of
length L, �xed at both its endpoints, the boundary conditions for solutions of the
wave equation are h(0; t) = h(L; t) = 0. Solutions to the wave equation can be written
in a Fourier series

h(x; t) =
X
m

am sin(kmx) cos(!mt + �m) (29)



where km = m�=L and !m = ckm = m�c=L. Thus the k's for the allowed \modes"
of the string are quantized. The coeÆcients am and phase shifts �m are determined
by the initial conditions h(x; 0) and _h(x; 0) specifying the initial state of the string
motion. Thus for a string released from rest _h(x; 0) = 0 so that �m = 0 and the am
can be extracted from an integral over the length of the string (i.e. using Fourier's
trick).

an =
2

L

Z L

0

h(x; 0) sin(
n�x

L
) dx (30)

The expansion coeÆcients are then substituted into Eqn (29) to describe the sub-
sequent motion of the string. Analogous series can be developed for other initial
conditions.

Energy Densities The distribution of kinetic and potential energies in a wave are
nonuniform in space and time, and can be described by the energy densities (this is
an energy per unit length in one dimension)

K(x; t) =
�

2

 
@h

@t

!2

U(x; t) =
T

2

 
@h

@x

!2

and E =
Z
(K + U) dx (31)

For the special case of a pure propagating wave of general shape, i.e. with h(x; t) =
f(x � ct) or h(x; t) = g(x + ct) (note that this excludes the superposition solution
h(x; t) = f(x�ct)+g(x+ct)), the energy densities K(x; t) � U(x; t) at each space-time
point (x; t).

Week of December 6
Some Useful Results for Gaussian Pulses

For a Gaussian pulse shape h(x) = ho exp(�x2=�2), the potential energy density is

U(x) = 2Th2o
�4

x2e�2x
2=�2 (32)

and the total stored potential energy is

U =
1

2

r
�

2

Th2o
�

(33)

Energy Transport in a One Dimensional Harmonic Wave For a right moving harmonic
wave h(x; t) = ho cos(kx � !t) the transmission of energy past a point x is given by
the wave power

P(x; t) = cE1 = �c!2h2o sin
2(kx� !t) (34)

where E1 = K + U is the energy density (with dimensions energy/length in one
dimensional wave motion). The average power is half its maximum value �P = Pmax=2.



In three dimensions it is useful to introduce the wave intensity which is the power per
unit area , cE3 where E3 is the three dimensional energy density (an energy per unit
volume). Thus for three dimensional wave propagation the total power transmitted
through a closed surface is the 
ux of the wave intensity. The Poynting vector of
electrodynamics gives the intensity of the electromagnetic wave.

Re
ection and Transmission CoeÆcients For a wave incident from a medium with
propagation speed c1 onto a medium with propagation c2, the incident wave is scat-
tered into a re
ected and transmitted wave. The transmitted and re
ected amplitudes
are related by the transmission and re
ection coeÆcients

r =
hr
ho

=
c2 � c1
c2 + c1

t =
ht
ho

=
2c2

c2 + c1
(35)

Note that �1 < r < 1 while 0 < t < 2. A negative value of r indicates that
the amplitude is inverted when the pulse is re
ected. The situation with t > 1 is
discussed in last assignment on Homework Set 11.
Conservation of energy implies that the incident power equals the sum of the re
ected
and transmitted wave powers, so that

Pi = Pr + Pt (36)

For a Gaussian pulse (or for any �nite wavepacket), integrating this expression with
respect to time shows that the total energy is conserved, i.e.

Ei = Er + Et (37)

For a harmonic wave (that is in�nite in extent), the power expression can be integrated
over one period of oscillation to demonstrate that the incident energy equals the sum
of the re
ected and transmitted energies.

Superposition and Propagation of Wave Packets

The superposition of harmonic waves with frequencies in the range �! ��!=2 < ! <
�!+�!=2 produces a wave packet, a propagating disturbance that is localized in space
and time. For example, a solution to the wave equation

h(x; t) =
NX
n=1

hn cos(knx� !nt) (38)

where hn = ho=N in the allowed range of frequencies. This sum can be converted to
an integral

h(x; t) =
ho
�!

Z �!+�!=2

�!��!=2
d! cos(k(!)x� !t) (39)

Since k(!) � �k + (@k=@!)(! � �!), the integral over (a narrow range of) ! gives

h(x; t) = ho cos(�kx� �!t)�
sin( @k

@!
�!
2

�
x� @!

@k
t
�
)

@k
@!

�!
2

�
x� @!

@k
t
� (40)



This is the product of two forward propagating solutions: the cosine factor propagates
in the positive direction at a velocity cp = �!=�k. cp is the phase velocity and gives
the speed of crests in the waveform. The second sin(�)=� factor propagates in the
positive direction at a velocity cg = @!=@k. This is the group velocity, and gives the
speed of the entire packet. The packet has a temporal width �t = 2�=�!, so that
the narrower the spread of frequencies the wider is the resulting the wave packet.
For a nondispersive medium (like the ideal stretched string) cp = cg and the crests
move at the same velocity as the packet. However, dispersive media exist (e.g. light
propagating in matter, sound waves propagating in a solid, water waves propagating
at a surface, etc.), so that in general the propagation is characterized by two speeds,
one for the crests and one for the packet. Of these two the group velocity cg is more
useful, since it describes the rate of propagation of the energy. In engineering the
relation �!�t = 2� is sometimes called the bandwidth theorem, and in quantum
mechanics it is the uncertainty principle. It implies that a pulse of �nite duration
cannot have a sharp frequency and conversely that a superposition of broad band of
frequencies is required to produce a temporally sharp pulse.


