Physics 230
Summary of Results from Lecture
Week of September 8
Pressure is force per unit area, $d \vec{F}=-p d \vec{A}$, where the direction of \vec{A} is outward along the surface normal.
The compressibility of a fluid $k=-(1 / V) \partial V / \partial p . k=1 / p$ for an ideal gas, but is much smaller for ordinary liquids, which can be regarded as approximately incompressible ($k \approx 0$).
Pressure variation in a column of incompressible liquid $p(z)=p_{0}+\rho g(h-z)$ where h is the height of the column. The gradient of the pressure gives the force per unit volume $\vec{f}=-\nabla p$. The volume integral of $\int_{\mathcal{V}} \vec{f} d V$ is the hydrostatic force on the material in the enclosed volume.
Pascal's principle: An external pressure is transmitted undiminished to all parts of a fluid in equilibrium. Note that this is a statement about the pressure, not the force. Archimedes principle : The bouyant force on an object in a fluid is the weight of the excluded fluid.

