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ABSTRACT
ENTROPIC ATTRACTIONS IN COLLOID-POLYMER SOLUTIONS
Ritu Verma

Arjun G. Yodh

We explore the depletion attractions that arise between hard colloidal spheres im-
mersed in a non-adsorbing polymeric solution of DNA molecules. Using a scanning
optical tweezer we were able to spatially confine colloidal particles along a line and
quantitatively examine the interaction potential between two 1.25um silica spheres
moving in various complex fluids. At fixed DNA concentration, we found that the
range and depth of the inter-particle potentials did not change for background salt
concentrations between 0.1 and 20 mM. Then we fixed the background salt concen-
tration at 10 mM, and measured the inter-particle potentials as a function of DNA
concentration. The potentials obtained display variations in depth and range that are
consistent with scaling behavior expected for semi-flexible polymers near the theta
point. In particular we clearly observe the crossover from a dilute solution of Gaussian
coils to the weakly fluctuating semi-dilute regime dominated by two-point collisions.
We also quantitatively test the Asakura- Oosawa Model for these systems and show
how it can be used in both the dilute as well as the semi-dilute regime.

We also explore the dynamics of colloidal particles in background DNA solutions.

We find that the Stokes-Einstein picture breaks down in these complex fluids as the



size ratio of the probe particle to the characteristic polymer length scale is decreased.
We explain these deviations in terms of the changes in the microenvironment caused
by the presence of the depletion cavity. The colloidal spheres were also used to probe

the transition time scales from the viscoelastic regime to the purely viscous regime.
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Chapter 1

Introduction

Very often the individual properties of the components of complex mixtures are well
understood, but it is the subtleties of the interactions between the different compo-
nents that give rise to new and interesting behavior. This thesis aims at understanding
the issues that arise when two commonly used materials - colloids and polymers are
mixed together. Colloid-polymer mixtures form the basic ingredients of a wide variety
of systems ranging from commercial products such as frozen desserts and motor oils
to natural biological systems, such as living cells. Thus the structural and dynamical
properties of these complex fluids are of industrial, physiological, and fundamental
interest, and they ultimately depend on the microscopic interactions between the
suspension constituents. In this thesis we will address some of these issues.

The histories of these two materials are intertwined and date back to the 19th
century. The word ‘colloids’ was coined by Thomas Graham in the late 1800’s. He

was trying to determine the diffusion of particles through a membrane and used the



term ‘colloid’ which means glue-like, to describe particles that did not pass through
the membrane. It is interesting to note that most of the materials he used which
fell into this category were actually polymeric, e.g. starch, cellulose, etc. Soon the
word ‘colloid’ was used to describe a purely physical state that was attainable to most
matter, just like a liquid or a gas. The broad ambiguous term was used to encompass
a variety of materials ranging from gold sols to polymers and soap solutions. However,
no attention was paid to the particular forces that made colloids stable. For example,
the differences between the covalent forces that hold polymers together and the variety
of other forces that can hold particles together was ignored. Thus the ‘colloidal state’
was not necessarily a reversible one. These ambiguities in nomenclature were resolved
over time, primarily due to pioneering work by Staudinger [2]. By the thirties the term
polymer was used to describe covalently linked molecules with complex architecture
and was distinguished from the word ‘colloid’. The term ‘colloid’ now refers to a
suspension of particles in a fluid that are between 1nm -1pm in size and feel the
effects of thermodynamic forces.

For the purposes of this thesis, the term colloid is used interchangeably with hard
sphere particle suspensions that are on the micron length scale. The composition of
these colloidal particles may be polymeric, though the final structure bears no resem-
blance to the typical concepts associated with a polymer. The primary differences

between polymers and colloids lies in the complex architecture of polymer molecules



that give rise to several degrees of freedom. For colloidal particles these degrees of
freedom can be ignored and traditional descriptions of hard spheres, can be used to
describe these properties in suspension. However to describe polymer behavior one
has to resort to a statistical mechanical approach.

In solutions that contain both colloidal particles and polymers, the bulk properties
of the solution are strongly determined by the particle-polymer interaction. This
alters the particle-particle interaction which ultimately affects the macroscopic phase
behavior of the complex fluid. Moreover, particle-polymer interactions also lead to
changes in the dynamical properties of these mixtures that affect the rheology of these
materials. The potential between polymers and particles can be broadly classified into
two categories — attractive and repulsive interactions. In the first case the polymers
adsorb onto the surface of the colloidal sphere, creating localized regions of high
polymer concentration. In the repulsive case, we find that the colloid particles are
surrounded by a region of low polymer density, called a depletion region.

Within the broad categories of attractive and repulsive interactions, there are sev-
eral interesting variations that can be found. These arise due to the specific nature
of the interactions. For example, the polymers in solution may contain an end group
which forms covalent bonds with the molecules on the surface of the colloidal bead.
This scenario leads to the formation of a brush-like layer on the particle surface,

and is a technique that is often used to sterically stabilize particles. In industrial



solutions of high ionic strength, colloidal particles tend to aggregate due to van der
Waals interactions. A layer of polymer on the surface prevents the beads from getting
close enough to feel these forces. Another interesting polymer-particle interaction re-
sults when the end group on the two ends of a linear polymer molecule can bind
irreversibly to the colloid surface. This leads to bridging between different colloidal
beads to form gel like networks. Often industrial materials need to exploit the elastic-
ity of polymeric substances while maintaining a rigid shape and use such interactions
to introduce colloidal particles into the interstices of polymer networks. Attractive
interactions between colloidal particles need not be as specific as the ones described
so far. Polymers may adsorb onto the colloidal particles anywhere along its backbone.
This leads to an increase in the particle hydrodynamic radius which changes with the
polymer concentration. An interesting example of binding along the backbone can be
found inside cells. The cell is faced with the problem that large quantities of genomic
information carried by DNA need to be efficiently packed into a small volume. It
is believed that one way in which this is achieved is by wrapping the DNA around
histones (globular proteins that are colloid-like). This process is thought to be driven
by the electrostatic affinity between polymeric DNA and colloidal proteins.
Solutions in which the colloids and polymers repel each other, lead to attractive
interactions between the colloidal particles. Colloidal aggregation can occur in non-

adsorbing polymer solutions since the increase in osmotic pressure due to exclusion



of polymer from the depleted regime leads to attractive forces. These effects are
discussed in detail in Chapter 3. Interesting examples of the depletion effect can
be found in biological systems. Adhesion between lipid bilayer membranes has been
attributed to the depletion effect. Binding between antigens and antibodies is also
attributed to depletion driven aggregation effects. Technologically the depletion effect
can be used to aggregate colloids in a controlled way and may prove to be useful for
protein crystallization techniques.

The strength of the interactions between colloids and polymers depends on the
specific nature of the attraction. The energy of interaction usually ranges from being
sub-kpT in solutions where entropy is the dominant mechanism to 300kzT in systems
where covalent chemical binding effects are prevalent. Various instruments such as the
surface force apparatus and atomic force microscope have been used to measure these
particle-polymer forces. However the force resolution of most of these techniques is
limited (the magnitude of the forces measured are over a piconewton), even though
the spatial resolution ranges in the angstrom regime. As a result, extensive studies
have been carried out on systems in which polymer-particle interactions are fairly
strong, however the weaker entropy dominated interactions are still not understood
(a few examples can be found in Refs.[3, 4, 5, 6, 7] . Moreover these experiments
mimic colloid-polymer suspensions by replicating the material properties, but rarely

the geometries. Large flat walls, or slightly curved ones, are used as model systems.



Experiments that directly probe the characteristics of the suspension include scatter-
ing techniques and visualization techniques that monitor the macroscopic changes in
phase behavior when the system parameters are altered. Both these techniques. use
indirect means to qualitatively determine the microscopic interactions. More recently
optical techniques using tweezers and total internal reflection microscopy are being
used [8, 9]

In this thesis we focus on the femtonewton forces that arise in non-adsorbing poly-
mer colloid solutions, that have evaded many measurement techniques. As a result,
interactions between colloids and polymers are poorly understood, despite the fact
that each of the individual components has been extensively studied. We present di-
rect measurements of the depletion forces in a model system consisting of polymeric
DNA and silica particles [10]. In the following chapters we discuss the entropic attrac-
tions in DNA solutions. In the first chapter we discuss the details of polymer theory
that are relevant to our experiments. In particular we discuss the derivation of the
state diagram that is important for our analysis. In the next chapter, Chapter 3, the
mechanism that drives depletion in polymer solutions is discussed. We derive a mean-
field depletion potential and compare it with the phenomenological Asakura-Oosawa
model. The techniques used in this thesis to study these interactions in DNA systems
is described in Chapter 4. Details of the optical tweezer, video microscopy and DNA

preparation techniques is presented. The results from these measurements form the



core of Chapter 5, where the subtleties of the measured potentials are discussed. The
qualitative and quantitative aspects of the data are analyzed and discussed in context
with the polymer depletion models. The implications of the measured energetics and
structure on the dynamics of beads in polymer solutions is explored in Chapter 6.
We obtain non-Stokesian diffusion behavior which highlights the importance of the
correlation cavity in polymer solutions. We conclude with a summary of our findings

and explore the new systems that we could study in the future.



Chapter 2

Introduction to Polymer Theory

Polymers form the building blocks of both technologically and biologically important
materials. Efforts to create new polymer molecules with novel material properties
are always underway [1]. In addition recent investigations into biopolymers, such as
DNA, proteins, actin, etc. {11, 12, 13], promise to introduce new classes of materials
with wide-ranging applications. To understand what distinguishes these materials
from traditional solids and liquids we need to examine the rich variety of chemical
and physical properties displayed by polymer molecules. This chapter addresses the
theoretical aspects of the physical properties of polymer solutions, with an emphasis
on understanding the properties of DNA.

The basic unit that makes up a polymer is called a monomer. These molecules
form repeating units that are chemically linked together to form a chain (14, 15,
16, 17]. For example, polystyrene, a common ingredient in coffee cups and packing

peanuts, is a chain formed out of the hydrocarbon, C¢HsCH = C H,, commonly called



Common Name | Acronym Repeat Unit Conformation
Polystyrene PS CsHsCH =CH, Linear
Poly(ethyl) PMMA -CHy, - CH,; — O- Linear

Deoxynucleoribose DNA AGC,T Circular,Linear

Actin f-actin g-actin rod-like

Poly-Aspartic Acid Asp CH, - COOH Branched

-CH(NH,») - COOH-
Glycine Gly C - CH(NH,) - COOH Branched

Table 2.1: Examples of common synthetic and biological polymers [1].

styrene [1]. The simplest linking structure for monomers, is a linear chain, however
other topological constraints can be built in. For example, bacterial plasmids are
linear chains which are joined on the ends to form a macromolecular ring [18]. Chains
can also tether to a central unit to form star polymers or randomly attach at different
junctures to form dendrimers, or branched polymers. In either case, the multiply
connected molecules give rise to structural properties which have length scales and
time scales that are very different from those seen in simple liquids and solids.

In this chapter we develop the formalism to understand the solution properties
of polymeric molecules. Polymers in solution are free to adopt a large number of
conformations. Unlike a single point-like molecule that usually has only translational

degrees of freedom in solution, a polymer molecule enjoys additional freedom because
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it can rearrange by bending and twisting at its multiple joints. Understanding this
increased phase space is crucial in elucidating the role of polymers in macromolecular
systems. We focus on the properties that arise due to the tertiary structure of the
moiecule, i.e. the long range spatial structure of the polymer. For example, a DNA
molecule has a primary structure that is determined by the exact sequence of base
pairs and a secondary structure that is controlled by short range order such as the
helical twists. But the conformation adopted by the DNA molecule is controlled by
the long-range order between links [17]. These structures give rise to novel interactions
in crowded macromolecular solutions.

We first develop the tools needed to describe the conformational properties of
macromolecules. We then address the issues that arise as interactions between links
and ultimately between different polymer coils start to dominate. Both a self con-
sistent mean field approach and scaling arguments are used to address the problem.
Finally, in last section we highlight the different physics that arises in polymer solu-
tions as the long range order of the links is altered - a situation that often arises due

to changes in the chemical environment of the macromolecule.

2.1 Isolated Polymer Coils

The shape of a polymer chain in solution is much like the trajectory of a drunk who

is limited to taking a finite number of steps. The radius of the area explored is
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Figure 2.1: An ideal polymer coil, with a segment length, [; and a monomer diameter
d. The end-to-end distance, R is also shown.

easily calculated, even though there are numerous paths that the drunk could take.
In the absence of external forces, the polymer does not extend out to its full length
but it adopts a random coil configuration. The numerous configurations available
to a polymer coil in solution makes a statistical description of its characteristics
particularly useful.

The polymer coil can be modeled by a random walk [19]. Each repeating unit (or
monomer in the simplest case) is treated as a step of length, /, and the number of steps,
N is equal to the degree of polymerization. The end-to-end molecular displacement

vector, R is given as the vector sum of all steps, I;,

R=Y1 (2.1)

If the motions of nearby monomers are uncorrelated, < I; - 1; >= 0; (i # j), the mean

square end-to-end distance which describes the characteristic size of the molecule is
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given by

<R?>= N2 (2.2)

A polymer that can be described by this simple picture is usually referred to as an
ideal polymer or a Gaussian coil. The latter name arises because the distribution
function, (R, N) that describes the probability that a polymer of N links has an

end-to-end vector, R, is Gaussian, i.e.,

3 3/2 ,_3R2
@(R,N)=(2mz) eawiz), (2.3)

The random walk model provides a powerful tool for describing polymer behavior
in solutions. However it also implies that the polymer links are capable of exploring
all space. This assumption rests on the fact that the chemical joints between links
are such that the links are free to rotate through arbitrary angles (N.B.: this gives
rise to another commonly used name - the freely jointed model). This is usually not
true for typical joints between monomers. Correlations between angular motions of
the monomers vanish exponentially on a length scale called the persistence length,
lp. Physically the persistence length, is the length along the chain over which the
memory of the chain direction is maintained. Since this correlation ‘persists’ in two

directions from any point on the chain, the Kuhn length, I is introduced and defined

as:

I =21, (2.4)
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The Kuhn length is used as the new random walk step length. It also plays an
important role in determining the flexibility of the polymer, which in turn leads to
significant changes in the bulk behavior of the polymer as will be described later.
The real polymer is now readily described as a random walk with renormalized
segment lengths and effective links. For a given polymer of length L and persistence

length [,, the number of links is
Neg = L/21, (2.5)
and the mean end-to-end distance is
< R? >= 4Negl? = 2Ll, = Li. (2.6)

An alternative and equivalent way to describe the polymer is the bead model [17].
In this model the polymer is taken to consist of finite sized beads at representative
points along its length, separated by massless filaments. The points are chosen far
enough apart so that the correlations between them are Gaussian. In other words
they have to be further apart than a Kuhn length. The number of such beads is found
by dividing the total length of the polymer by the length of the connecting filaments.
Once again the mean square end-to-end distance is given by =~ Nye.qa?, where a is
the distance between the beads.

Experimental probes have verified the validity of these theoretical models. Scat-

tering techniques, using both light (20, 21, 22] and neutrons [23, 24, 25] have probed
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the radius of gyration, Rg of the polymer coil. Viscometric measurements[20, 26|
have also been used to determine the effective size of the polymer coil however these
techniques usually probe the hydrodynamic radius of the coil. Both the radius of
gyration and the hydrodynamic radius, Ry, are probes of the second moment of the
probability distribution given in Eq. 2.3. They can be related to the mean square

end-to-end distance < R? > through constants which are given by

R% = % <R?>; (2.7)

/31r
2 2

The differences between these two measurement techniques are highlighted in Fig. 2.2.
We see that any measurement involving liquid flow effectively penetrates further into
the polymer coil whereas measurements sensitive to steric configurations probe the

radius of gyration.

2.2 Non-Ideal Behavior

In a real polymer solution it is often difficult to find an ideal polymer coil. Interactions
between the links cause significant deviations from the Gaussian nature of the chain
statistics. In this section we explore the fine balance between the different interactions
- steric, chemical, and electrostatic, that determine how the polymer coil swells or
collapses into a globule. We include the Flory results that are traditionally used to

describe the change in polymer size due to link interactions and discuss the different
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(a)

Figure 2.2: A comparison between the different sizes that can be measured for a
polymer coil. In figure (a) we see the extent of the polymer coil which measures
the maximum displacements between links. However scattering techniques probe a
smaller size given by the second moment of the probability distribution P(R) (see
Eq. 2.3), i.e. the radius of gyration which is shown in (b). Viscosity measurements
probe the hydrodynamic radius (c) which is smaller than R, since the solvent pene-
trates further into the polymer coil, feeling a smaller effective radius.
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methods that are used to characterize these effects in polymer solutions.

Link-link interactions are usually described as repulsive on short length scales and
attractive on longer length scales. The repulsion arises from steric effects; the primary
consideration being the fact that each link occupies a finite geometric volume, and
thus excludes other links from this region. The link attraction typically results from
Van der Waals forces. The competition between these two effects leads to an effective
interaction potential between links such as the one shown qualitatively in Fig. 2.3.
These interactions primarily reduce the available volume for the polymers and as a
result are usually called excluded volume effects. A modified random walk calculation,
called a self avoiding random walk model (SAW) [16] in which links are not allowed
to cross or overlap, is used to describe such polymers. This serves as an important
model for computer simulations on polymer configurations.

The most obvious effect of self avoidance is to change the scaling behavior of the
coil with respect to V. In the ideal case we found that the size of the coil scaled with
link number as N'/2. When excluded volume interactions are included we find that
the size scaling goes to N3/3. This was first shown by Flory [14, 15], using simple
energy arguments. He showed that the free energy of a Gaussian coil is directly
proportional to the mean-square end-to-end distance, < R? > (this can be derived
from Eq. 2.3 by using the fact that the free energy is related to the entropy through

Fg x —kgTlhhd® 237%25). Thus any increase in size produces an inhibiting elastic
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u(r)

Figure 2.3: A typical link interaction potential. The attractive well is usually at-
tributed to Van der Waals forces.

force. The effects due to interactions were included through a virial expansion of the
free energy. The interaction energy in the volume occupied by the coil is given by,
Fint ~ kgTve®R3 = kgTuN?/R3, where ¢ is the average polymer concentration and
v characterizes the excluded volume effect and is weighted by the polymer density,
N/R®. The combination of the entropic effects from coil expansion and the excluded

volume interactions give the total free energy, F as

3R2 + uN?
2N R3

F/kgT = (2.9)

Minimization of the free energy with respect to R yields a Flory radius, Rr, which is

given by

Rp o v/31P5N3/5, (2.10)
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Though not exact, the model comes close to describing a swollen polymer coil. More
sophisticated renormalization group theory predictions calculate the exponent of N
to be 0.588 [27, 28].

Let us elaborate further on the contributions to the free energy that result from
the excluded volume effects. Just as corrections to the ideal gas model are expressed
in terms of virial coefficients which account for molecular interactions, similarly, ex-
cluded volume interactions between links in a coil can be incorporated into polymer
theory. The free energy of a polymer coil can be expanded in a concentration series

to include the effects of interactions. The virial expansion is usually written as
F/kgT = (c/N)In(c/Ne) + Bc? + Cc® + ... (2.11)

where B and C are second and third order virial coefficients, respectively and c is the
monomer concentration. The corresponding osmotic pressure is given by II/kgT =
¢/N + Bc? + 2Cc® + .... The second virial coefficient is defined by the usual binary

cluster integral (see Appendix A) which is given by
B(T) = (1/2) [ dr(1 - e~*V/kaT) (2.12)

where u(r) is the interaction potential between links and r is the relative separation
between links. A typical interaction potential is shown in Fig. 2.3. We see that at
short distances the potential is dominated by a large repulsive barrier that arises due
to steric considerations. As the inter-link distance is increased this gives way to an

attractive region which results from Van der Waals forces.
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We can calculate the second virial coefficient by decomposing the interaction po-
tential into two parts [29]. The well defined minimum at r,, can be used to define
two regimes. At distances under r, the potential is primarily repulsive, i.e u(r) — oo,
but at larger separations the potential is attractive. This attractive regime can be
modeled by the r® dependence shown by Van der Waals potentials. We can rewrite

the integral in Eq. 2.12 as
To 0 o
2B(T) = 41r[d1‘1°2 + 41r/drr2[1 — eBT(7)] (2.13)
0 To

where € represents the depth of the potential at equilibrium. A straightforward inte-
gration shows that the first term yields the volume of a link, (4773/3). The second
term is evaluated in the limit in which T >> ¢, in which case the exponential can
be expanded as, 1 + ¢£:(%)€ + .. to yield, ~ — 5575 Thus we see that the sec-
ond virial coefficient goes from being a positive number to a negative number. as
different regimes of the interaction potential become important. This often leads to
instabilities which in polymer solutions might drive the coil-globule phase transition.

In a polymer solution, temperature changes control the interaction between the
links. Not only can these changes be brought about by adding heat to the solution
but also by changing the chemical environment through the background solution. The
temperature at which the second virial coefficient is zero is termed the ©-temperature.

At this temperature the excluded volume effects are effectively canceled by the link

interactions since B is identically zero. Deviations from this temperature are charac-
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terized by the parameter, 7 [17], which is defined as

(T-9©)

5 (2.14)

T

At temperatures where T >> ¢/kp, the second virial coefficient is positive, and is
dominated by the first term in Eq. 2.13, i.e. B = v, where v is the excluded volume
of the polymer link, v = (4/3)nr3. The polymer molecule never feels the attractive
well and interactions are controlled by the repulsive barrier. As the temperature is
decreased it approaches, the ©O-temperature where the second virial coefficient is zero.
Around this region Eq. 2.12 can be expanded and B is found to increase linearly with
T, Le. B ~ vr. However as the temperature continues to fall the polymer molecule
lies close to the equilibrium position, r, in Fig. 2.3 and the attractive region in the
interaction potential starts to dominate leading to the formation of globules. The
second virial coefficient is found to be proportional to —ev/kgT in this case.

The interaction between the links arises due to solution mediated forces. In so-
lutions where the interactions are purely repulsive, i.e. when B > 0, it is easy to
suspend a polymer molecule, giving rise to the name ‘good solvents’. On the other
hand solutions in which, attractive interactions dominate are called ‘poor solvents’
since the polymers are likely to form globules and condense out of solution. The
intermediate solution in which there are no link interactions are called ©-solvents.

For a polymer solution, the implications of the changes in the second virial coef-

ficient can be seen in the coil size. If repulsion dominates, then the coil size appears
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larger. If attraction dominates, then the coil can appear condensed. Thus one way
to determine the solvent quality is to look at the ratio of the measured size and the
calculated ideal (Gaussian) size. This ratio is called the swelling parameter [17] and

is given by

2
2_<Ractua.l>

=T (2.15)

(0]

Thus if o® > 1, the polymer coil is swollen, if a? = 1 then it is ideal and if a2 < 1 it
is a globule.
If the excluded volume parameter is small then the mean end-to-end distance can

be expanded in terms of B [17]. This results in
< R*>= NP1+ (4/3)z + ... (2.16)

where z is defined in terms of the microscopic variables, N, !, and B as

332 B
z= 25 NW[? (2.17)

Physically, the z parameter can be understood as the number of binary collisions,
(~ Nxwvol.fraction), in the coil with B as the weighting factor for these collisions. We
discuss the role of the second virial coefficient in describing macromolecular solutions

in the next section.
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2.3 Many Polymer Coils

In the previous sections we discussed the models used to describe an isolated polymer
coil in solution. However real polymer solutions contain many polymer coils, and
interactions between these coils have to be considered in order to describe the prop-
erties of the polymer solution. We discuss the different theoretical approaches used
to describe such polymer solutions, in particular we focus on the self-consistent field
theoretic methods. We also compare the mean field arguments with scaling argu-
ments that are traditionally used to describe polymers. These results form the basis
for discussing and developing depletion models in the chapters to follow.

In order to determine the effect of interactions between coils we need to quantify
the number of coils present in the solution. This is usually done by measuring a
polymer density or volume fraction. The density of polymers in solution is described
equivalently by the number density of monomers, ¢, or the polymer coil density, n.

The two quantities are related through the degree of polymerization, N, by
c= Nn. (2.18)
Another useful dimensionless variable is the volume fraction which is defined as
® =cv=nNv (2.19)

where v is the volume occupied by a link, (4w!3/3). Experimentally most polymer

weights are expressed in terms of a weight per unit volume, or p = ﬁ%n, where My,
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is the molecular weight and N, is Avogadro’s number.

Polymer solutions can be divided into three regimes depending upon the number of
coils that are present in solution. In a dilute solution, the polymer coil concentration
is small, and we can still use the characteristics of an isolated coil such as the size
and osmotic pressure it exerts, to describe the solution. However as more polymer
is added to the solution the chains begin to overlap and the polymer solution enters
the so-called semi-dilute regime. The overlap concentration, ¢* marks the cross-over

concentration. It is defined as
4T
¢ = N/(—3—R3), (2.20)

where R is the effective size of the polymer coil. For example in a solution containing
Gaussian coils, R = Ry, but in a solution where the coils are swollen the size would
be determined by the Flory radius, Rr. In either case the crossover concentration
describes a system of close-packed spheres, whose effective diameter is given by the
characteristic size of the polymer. Beyond c*, the physics of the solution changes as
entanglement effects come into play. Collisions with other polymers lead to the origin
of a new length scale, the correlation length, £, which describes the average spatial
distance between entanglement points (see Fig. 2.4). On length scales under £ the
polymer can still be modeled as a random (or in the case of a non-ideal polymer a self-
avoiding) walk, but on larger length scales the presence of the surrounding polymers

must be taken into account.
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Figure 2.4: The correlation length in a semi-dilute polymer solution. It describes the
mean distance between entanglement points.

Equivalently a semi-dilute polymer solution can be described as a close packed
system of ‘blobs’, the mean size of which is given by the correlation length [16, 17, 30].
Within a ‘blob’ the polymer still behaves as an independent coil. Moreover since there
are no correlations beyond the length scale, £, the blobs are statistically independent.
This apparent dichotomy between a close packed system and an ideal gas like behavior
is an important concept in polymer theory which we will revisit many times through
this thesis.

The polymer volume fraction in the semi-dilute regime is still very small. At
c*, which scales as N~%3 in a good solvent and x N~Y2 in a ©-solvent, the vol-
ume fraction, is only = 10~2 and 2 107, respectively, for a polymer with a high
degree of polymerization, i.e. N = 10°. As this volume fraction is increased and

approaches unity, the polymer becomes heavily entangled, and the solution becomes
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concentrated. Polymer solution properties can now once again be described by Gaus-
sian statistics since crowding overcomes the excluded volume effects. This is counter
intuitive but a detailed examination of the link interactions (see Ref. [16]) shows that
the repulsive and attractive components exactly cancel each other as the monomer
concentration is increased. Fig. 2.5 summarizes these three different regimes along
with the corresponding density fluctuations that are typical in each regime.

We concentrate in this thesis on theoretical descriptions of the dilute and semi-
dilute regions. In each of these regions we discuss the scaling properties of the osmotic
pressure, and the correlation length. However we first briefly review the different

theoretical approaches that have been used to describe polymer solutions.

2.3.1 Theoretical Models for Non-Ideal Polymers

Historically, polymers in solution were first described by Flory via a mean field theory
[14, 15]. The theory was further developed and brought to its present state by S.F.
Edwards [31]. However an alternative approach called scaling theory, was put forth
by DeCloiseaux [32] and DeGennes[16] to account for the discrepancies that arose be-
tween experiments and mean-field predictions. More recently, renormalization group
ideas(16] have been applied to polymers to obtain a greater degree of accuracy. We
briefly discuss these approaches and their range of applicability.

The self-consistent mean field approach assumes that there is a single macroscopic
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Figure 2.5: The different concentration regimes of a polymer solution. The cartoons
in column I represent snapshots of polymer coils in solution. In Column II we see
the concentration profile along a slice through the solution. The solid black line in
Column II depicts the average monomer concentration of the bulk solution. In (a) we
see a dilute solution which has large fluctuations around its mean concentration value.
The fluctuations are reduced in the semi-dilute solution, (b), but can still produce
large effects on polymer properties. In the concentrated solution, (c), the fluctuations
around the mean concentration are very small.
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state that is more favorable than others. The system finds this state and does not
fluctuate. This state can be found by variational methods applied to the free energy
of the system. For example the excluded volume effect discussed in the previous
section can be modeled as a self-consistent field, U(r) [16] (N.B.: There is no physical
external field, like a magnetic field, however the interactions play a similar role in the
free energy of the system). The repulsive interactions between links can be written

as

U(r)/ksT = ve(r) (2.21)

where ¢(r) is the monomer concentration distribution and v is the excluded volume
parameter (N.B.: The above equation is equivalent to Eq. 2.11 in the athermal limit.)
Minimization of the free energy with respect to the concentration yields an equilibrium
. distribution of monomers which can be used to recalculate a new effective field and
a subsequent new equilibrium concentration distribution. This iterative procedure
eventually converges to a self-consistent potential. The fact that this is usually carried
out under the assumption that the system can be modeled by an average concentration
(even though it may not be the case, as was shown in Fig. 2.5), makes it a mean field
calculation.

The mean field calculation ignores correlations between monomers and this limits
its range of applicability to fairly dense polymer solutions. For example, a mean field

description of a dilute system ignores density fluctuations; the approach includes
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effects due to < ¢ >2 but not due to < ¢2 > . The scaling approach [16] attempts
to include effects that arise due to correlations between density fluctuations. It is
based on arguments generally used to describe fluctuations near a second-order phase
transition such as those that arise in magnetization in ferromagnets near the Curie
point. The macroscopic properties of the polymer system are found to exhibit power
law behaviors in which the critical exponent does not depend on the microscopic
characteristics of the system. Reasonably simple arguments based on this approach
give remarkably accurate descriptions of polymers in regimes where fluctuations are
important.

However the primary drawback of scaling theory is that it fails to predict prefac-
tors and constants measured in experiments. More recently, renormalization group
methods [16] have been used to provide a rigorous, quantitative description of poly-
mer behavior. These methods rely on the fact that the polymer can be divided into
multiple blocks, which are used to calculate polymer properties. The size of these
subdivisions are increased, and after each increment the polymer properties are re-
calculated, until the properties converge to a stationary point. A detailed description

of these theoretical methods can be found in Ref.[16].
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The Self-Consistent Mean Field Approach

In this section we elaborate on the methods used in the self-consistent mean field
approach, since it can be used to describe most of our experimental observations.
The mean field approach is commonly employed to describe the free energy of a
polymer system, which in turn is the starting point for calculating various macroscopic
properties exhibited by the solution. We use a Green’s function approach to describe
the different configurations that can be adoptgd by a polymer coil and find that the
function conveniently satisfies a Schréedinger-like equation. This enables us to utilize
the well known techniques of quantum mechanics to calculate the free energy and
other properties of the polymer solution.

For an ideal polymer the spatial correlation between two points, r; and r;, located
on a chain is Gaussian, i.e ggaus(ri, ;) ~ ezp[—3(r; — r;)?2/2/%]. However, in the
presence of excluded volume effects, which can be modeled as an effective potential
(Eq. 2.21) in the self-consistent mean field picture, the probability distribution is
modified by the Boltzmann factor, e%% We denote this new probability distribution
as, g(r;,r;) ~ e{'(Er‘T') 9gauss(Ti, T;), where, i and j are two points on the polymer chain.
In order to calculate the partition function for a coil with fixed ends, we need to sum

over all the co-ordinates of the intermediate points, d3r;. This function is a Green’s

function, and it represents the statistical weight attached to a chain of N links that
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starts at r and ends at ry. It is given by
Gn(rn,r) = /g(l'N,1'1)9(1’1,l‘z)---g(l'N—ur)dl‘l---dl‘N—l (2.22)

The Green’s function satisfies the differential equation

8GN(1'N, l') _ _U(l‘)
ON " kgT

2
Gulrw,x) + =V?Gn(rw,) (2.23)

where [ is the link length, and N is the number of links in the polymer chain. A
detailed derivation of this can be found in several texts [16, 19].

We see that Eq. 2.23 closely resembles the Schréedinger equation from quantum
mechanics. A direct analogy can be drawn between N, the number of links in a poly-
mer and the time variable in quantum mechanics. The Green’s function, Gy(ry.r)
and wavefunction ¥, are the coherent superposition of the amplitudes of the different
paths followed by polymer links and particle wavefunctions respectively. This anal-
ogy allows us to draw from the numerous concepts and solutions that are well known
from quantum mechanics. For example it is possible to write the right hand side of

Eq. 2.23 as an operator, H, with a set of eigenfunctions, u;, such that
Hug = €xui (2.24)
where the operator is defined as

H=—(%/6)V?>+U(r)/ksT (2.25)



31

Here ¢, is the eigenvalue of the operator, . Thus the Green’s function can be

expanded in terms of the these eigenfunctions to yield
Gn(rw,r) = / dkut (ry)ug (r)e Ve (2.26)

We see that this sum is dominated by the lowest value of ¢; or the ground state, ¢,.
This is usually referred to as ground state dominance, and the eigenfunction ug is
usually renamed #(r). In the self-consistent mean field approach, it is assumed that
the polymer always finds this state.

Just as in quantum mechanics, one can now use this result to calculate physical
observables. For example, to calculate the link concentration in a polymer solution,
c(r), we calculate the sum of all paths from r to r’ in M steps, and from r’ to ry
in N-M steps. Finally we sum over all possible intermediate steps, M. This can be

written in terms of the Green’s function as
e(r) =3 / dr’ / dr"G(r', t) MG (r, *") N — 1t (2.27)
M

Assuming ground state dominance, i.e. Gy(r, ') ~ uj(r)uo(r’)e V¢, the above equa-

tion can be rewritten as

) Z / dr’ / dr'ug(r')uo(£)ug(r)ug (r")e~ N (2.28)

= const.up(r)ug(r)

uo(e)|” = ([
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Conceptually, if we look at the point r the concentration is determined by both the
number of chains that are coming to the point as well as those that are leaving. This
leads to the |¢(r)?| dependence since we need a Green'’s function to get the chain to
r and another one for the chain to proceed from that point onwards.

We now return to calculating the free energy of the system. We first do this for
the simple case when there are no interactions between the monomers, i.e. U(r) = 0.
The contributions to the free energy in this case arises solely from the conformational

entropy of the system. The free energy can then be written as

F/ksT = [ dry’ (z)Hov(x) (2.29)
12
= [ drw(e)(v2u(x)

= const — g/dr(vw(r))2

We see that in the absence of interactions the free energy is dominated by the con-
formational entropy of the coil and reproduces the ideal coil result.

The effects of the interactions can be included by adding the self-consistent po-
tential U(r) to Eq. 2.29. In addition the total free energy of the polymer coils also
contains entropic contributions from the translational free energy of the monomers.

Including both these effects allows us to write the total free energy as
5 1/2\2 c(r), re(r)
F/ksT = U(r)/ksT — = / dr(Ve(r)?)? + Sin(S0) (2.30)

where we have utilized Eq. 2.28 to replace the ground state eigenfunction, v¥(r).
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The first term represents the internal energy of the system and includes excluded
volume interactions (N.B.: it can also include effects due to external constraints, like
a repulsive wall); the second term is the entropy loss due to the connectivity of the
links and the third term represents the translational entropy of the polymers. We
will use this development of the free energy extensively to derive physical parameters

for polymers within this approximation.

Physical Properties of Polymer Solutions

In this subsection we will calculate the osmotic pressure and the characteristic size
of the polymers in solution. We divide our discussion into two parts; the dilute
regime and the semi-dilute regime. The semi- dilute regime is described by both field
theoretic methods and scaling theory.
I. Dilute Solution

In a dilute solution the polymer chains are far apart and their statistics can be
modeled after the properties of an isolated coil as discussed above. In addition to the
spatial dimensions of the polymer coil one can look at the osmotic pressure that is
exerted by a chain. As in the case of an ideal gas the osmotic pressure for a Gaussian

coil is given by

C
I = ksT (2.31)

If interactions are to be taken into account a virial expansion can be used, and the
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osmotic pressure is written as
I/kgT =¢/N + B +2Cc® + ... (2.32)

where B and C are the second and third virial coefficients, respectively.
II. Semi-Dilute Solution

The semi-dilute region can be described by both the self-consistent field method
and the scaling approach. Both theories predict qualitatively similar behavior, but the
exponents with which physical properties scale, do not agree. The self-consistent mean
field approach does not account for fluctuations, but is a valid theory for polymers
in which density fluctuations are not important, such as semi-flexible polymers. This
will be discussed in detail in the last section. Most experimental deviations from the
mean-field theoretic predictions are accounted for by the scaling method.

Self Consistent Field approach

We calculate the osmotic pressure of the polymer solution using a Flory Huggins
approach wherein the concentration distribution is assumed to be a constant, i.e.
¢(r) — c. This approximation ignores the connectivity of the links, and assumes
that each monomer behaves like a free gas molecule. This implies that there are no
contributions to the entropy due to the connectivity of the chain, i.e the (Vc!/2)? term
in Eq. 2.30. In the Flory-Huggins model link connectivity is included by calculating
the free energy on a lattice which restricts the positions of the links to a handful

of sites. However the entropy of the system does contain contributions from the
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translational entropy of the polymer molecules and the translational entropy of the
solvent molecules. The total entropy of mixing, Sy can be written in terms of the

polymer volume fraction ® as

toti:l = kB %lﬂ(ﬁ + kB¢solventln¢solvent (233)
= kp'PIn(cv) + kp(1 — cv)In(1 ~ cv)
The internal energy contribution to the free energy contains monomer-monomer in-

teractions, monomer-solvent interactions and the solvent-solvent interactions. It is

given by
E™ = kBT(Xmm(Cv)2 + XmscU(1 — cv) + Xss(1 — w)2) (2.34)
where, Xmm represents the monomer-monomer interaction strength, x., describes the
monomer-solvent interaction and x,, represents the solvent-solvent interactions. Each
is weighted by the appropriate concentration of the species involved in the interaction.
These different interaction strengths can be combined together and written as
X = Xms = (1/2)(Xmm + Xss) (2.35)

which is called the Flory parameter. It is related to the excluded volume parameter,

v, discussed earlier through
v=(x—-1/2)83 (2.36)

The entropy, (Eq..2:33), and the internal energy, (Eq. 2.34) can be combined to give

the total free energy, through the thermodynamic relationship, F = E — T'S. Since
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the concentration of monomers is very small even in the semi-dilute region, we can

expand the free energy in small volume fraction, cv to give
cv 1 2 1 3
F~ kBT'Nln(C'U) + kBTa(C'U) (1-2x) + kBTE(C'U) + ... (2.37)

The osmotic pressure, II, can be calculated from the free energy by using the ther-

modynamic relationship, I1 = (¢)3—5 — F, which yields

cv

H=kBTN

kBTé(l - 2x)(cv)? + .. (2.38)

We see that as the volume fraction approaches zero we retrieve the ideal gas law,
I1/kgT = ¢/N, and as the concentration is increased the effects of the second order
terms start to dominate.

The free energy given in Eq. 2.30 can also be used to calculate the correlation
length of the entangled polymer solution in the semi-dilute regime. This is usually
done by examining the correlations between concentration fluctuations that are in-
duced due to small perturbations. The effect of the fluctuations can be calculated by
expanding the concentration fluctuations around the equilibrium concentration value.
This can be understood by looking at a harmonic oscillator system. In the mean field
approach the average polymer concentration corresponds to the equilibrium position
for a particle in a harmonic well. Small forces acting on the particle would lead
to excursions around the mean value and can be modeled by inclusion of quadratic

terms in the particle’s potential. Similarly an expansion of the polymer concentration
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around the mean value allows us to characterize its response to the perturbation. The
application of mean field calculations to correlation predictions is called the random
phase approximation.

We return to Eq. 2.30 and examine the results in the random phase approximation
to calculate the effects of fluctuations. The polymer concentration, ¢(r), is expanded
around its mean value by setting c(r) — ¢ + éc(r). and assuming that the mean
concentration, c is uniform throughout the solution. Substituting this expansion in

Eq. 2.30 yields,

(c + dc(r)) In (c + d¢(r))

F=[rE() - %F(V(w 6c(r))'/?)? + T Ne

(2.39)

Since the deviations from the mean are small we can Taylor expand the concentration

and rewrite Eq. 2.39 as,

2 2
F = Fyc) + /dr——(écg)) (%Hc-) + -2T4ic

(Vée(r))? (2.40)
where only terms of order éc have been retained and Fy(c) represents the unperturbed
free energy. We have also used the fact that %—E x %’i + 1/N. The expression can

be simplified by grouping the first two terms and redefining the coefficient as

2,011
£ = E(%) (2.41)

which allows us to write down a simplified version of Eq. 2.40 as

F =F(c) + -gzl:—; d3r_(_6c§2;))2 + (Véc(r))? (2.42)



38

From the above equation it is easy to see that in order to minimize the free energy the
last two terms should equal zero. With a little bit of rearrangement and integration
by parts (see Appendix B) this minimization yields an Ornstein-Zernicke like equation

for éc(r),
V35c - (1/€%)6c = 0. (2.43)

The above equation is similar to the Debye-Hiickel equation in electrostatics, and the
inherent length scale, £ plays a similar role as its electrostatic counterpart. We can use
the Flory-Huggins approximation in which the osmotic pressure at low concentrations

is given by Eq. 2.32, to explicitly write the correlation length as
£ = (1*)/12(2Bc + 6Cc®> + 1/N) ™! (2.44)

where, B and C are the virial co-efficients discussed in Section 2.2 and [ is the link
length. This mean field description of the screening length was first quantitatively
calculated by S.F. Edwards [30]. Once again this is a useful description for entan-
gled polymer solutions in which the concentration fluctuations are small, i.e ¢ < c,
allowing the use of a perturbative treatment.

Scaling Approach

We can repeat the analysis for the predictions above by using a scaling argument.
In this approach it is assumed that the ratio of the concentration to the critical

overlap concentration, i.e. c/c* is a fundamental parameter that defines the scaling
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properties of the polymer solution. All polymer properties can be expressed as a
power law of this fundamental parameter. The exponent that determines the scaling
of the different polymer properties are determined by imposing two conditions - the
results should smoothly approach the dilute solution predictions and they should be
independent of the degree of polymerization, N, since the memory of the original
chain is lost in the semi-dilute regime.

To calculate the osmotic pressure, we assume that II is related to the ratio c/c*

through a critical exponent, m, and is given by

ITx (c/c")™ (2.45)
When used in conjunction with, ¢* o« N~3, the above equation can be written as

I oc ™ N4™/5-1 (2.46)

By requiring the osmotic pressure to be independent of N, we calculate m = 5/4.
This yields

I = Kc¥*. (2.47)
where K is an undetermined multiplicative constant. The osmotic pressure scales
with concentration as 9/4 which is different from the mean field result obtained earlier

(Eq.2.38), where IT ~ ¢2. The difference arises from the inclusion of correlation effects.

An entanglement length for the semi-dilute solution can be calculated in a similar

manner. By constraining the expression to be independent of N, as well as requiring
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the value to approach a Flory radius, RF, at c*, gives
§ = Rp(c/c")™%/* (2.48)

Once again the concentration dependence deviates from mean-field predictions of
-1/2.

We have presented a description of polymer solutions using both the self-consistent
mean field description as well as scaling approach. We see that predictions for the
osmotic pressure and correlation length scale differently in these two theories. The
differences arise primarily due to concentration fluctuations that are seen in polymer
solutions. The excluded volume interactions lie at the core of these fluctuations. Thus
solutions which have strong repulsive link interactions are more likely to follow scaling
theory predictions. On the other hand if the interactions between links is zero the
solution can be well described by a mean field theory. This theory is also applicable
to a group of polymers that are known as semi-flexible polymers. We explore these

polymer solutions in further detail in the next section.

2.4 Semi-Flexible Polymers

Our initial discussions on polymer solutions, assumed that the polymer could be
treated as a freely jointed chain of monomers. However we refined this definition
by the inclusion of the persistence length. This accounted for the fact that each

monomer was not free to rotate, but on length scales larger than [,, the motion of the
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monomers was uncorrelated. In this section we explore the different bulk properties
that arise in polymer solutions due to this increased stiffness. These differences in
polymer properties are also seen in our experimental observations.

The introduction of the persistence length creates a ‘stiffness’ in the polymers.
These stiffer or semi-flexible polymers are characterized by a rigidity parameter, p,
which is defined as p = 2/,/d where d is the diameter of the polymer (N.B.: for a
truly freely jointed chain, d is the monomer diameter). For low values of p, a chain
is described as flexible, while for p > 1 the chains are termed semi-flexible. As the
rigidity of the polymer increases it finally approaches a rod-like configuration. A
good example of a flexible polymer is Polystyrene (p=2) whereas DNA (p=50) is
more rigid and is described as semi-flexible. This introduction of rigidity leads to a
renormalization of the number of links, N, to an effective link number, (see Eq. 2.5),
and to a modified second virial coefficient, B = dlf,r. Thus we see that a stiff rod like
monomer, sweeps out a disk like volume that excludes other monomers.

The properties of polymer solutions can be compactly summarized in a phase
diagram in which the solvent quality, 7 of the solution is plotted against the polymer
volume fraction, ® = cd®. A simple picture for flexible polymers is presented in
Fig. 2.6. For example, in dilute polymer solutions that lie near the ©-temperature
(Region I), the polymer behaves like a Gaussian coil with radii, R; which is given

by Eq. 2.7. However, far from the ©-point, the coils appear swollen with a radius,



Region | Osmotic Pressure, I, | Correlation Length, £ /R,
I c N2
II c N3/5,1/5
v ASl4p3/4 c-3/4-1/4
\% 3 oL

Table 2.2: The concentration and T dependence for the different phases of flexible
polymer solutions.

Ri; ~ v'/37Y/SN3/5. The transition boundary between ideal behavior and swollen
coils is defined when the parameter, z = 2(3/27)%2N'/2B/d® ~ 1 and this is achieved
when R; = Ry;

As the concentration of links, is increased the polymer enters the semi-dilute
regime. Depending on the solvent quality several different regimes emerge. The
different phases of the semi-dilute solution, Region IV and V can once again be
represented on the phase diagram shown in Fig. 2.6. Concentration increases near
the theta point leads to a transition from Region I to Region V. In this weakly
fluctuating regime triple collisions dominate and mean field treatments can bevused
to describe polymer properties. The correlation length and osmotic pressure, scale
with concentration as £, ~ d(cd3®)~! and ITy- ~ d°¢c3 respectively. On the other hand if
the polymer solution lies far from the ©-point, then concentration increases will lead

to a transition from Region II to Region IV. At these increased temperatures, scaling
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Figure 2.6: A qualitative phase diagram for flexible polymers showing the different
solution phases. The horizontal axis represents polymer concentration and the ver-
tical axis represents deviations from the ©-temperature, 7. The labelled regions are
described in detail in the text and tabulated in Table 2.2.
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statistics are needed to account for the large concentration fluctuations that arise due
to strong repulsion between links. The boundary that delineates the dilute region
from the semi-dilute phase is determined by the overlap concentration, ¢* ~ N/ R},
which in turn depends strongly on size of the swollen coil. In this phése (Region
IV), the correlation length &y scales as d(cd)~%/r~'/4 and the the pressure is given
by IT;y ~ 734¢(cd®)®*. With further increases in concentration the importance of
fluctuations diminishes and the solution properties return to those exhibited in Region
V. The crossover is defined by the line, ® = 7 which is easily obtained by equating &y
and &y or IIy- and II;y-. Table 2.2 provides a summary of the polymer characteristics
in these different regimes.

The phase diagram presented in Fig. 2.6 is rarely realizable since polymers are
never truly freely jointed. In semi-flexible polymers the inclusion of the rigidity
parameter, p, leads to the emergence of additional regimes in the diagram of state
(17, 33, 34]. These have been summarized in Table 2.3. Most importantly it leads to
the existence of two new semi-dilute regions in the phase diagram (shown in Fig. 2.7),
Region VI and VII. In region VII, which lies near the theta point, the polymer can still
be described by Gaussian statistics, even though it is entangled. However the number
of links is rescaled by the persistence length so, the size is given by, Ry ;; ~ N'/2p!/2,

Once again it is the overlap concentration that defines the boundary between the
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Region | Osmotic Pressure | Correlation Length/R,
I c NY2pl/i2q
II c N3/51.l/5p1/5
vV SN c3r=1/4p=1/4
\% 3 c~ipl/?
VI AT c2p=1/2p1/2
VII c N'/2pi/2

Table 2.3: The concentration and 7 dependence for the different phases of semi-flexible
polymer solutions.

dilute region, I and the semi-flexible region VII and can be written as
c= N"Y2p=3/2 (2.49)

The second new region, VI, emerges at the expense of region, IV. Semi-flexibility
leads to the narrowing of the region in which fluctuations are important and a dom-
inance of pair wise contacts in the solution. In this new phase the polymer osmotic
pressure and the correlation length can be described by mean-field theory[17, 33]
and are given by numerically accurate expressions IT,/kgT = BNZ%n2 and £ =
lp(6BNegn,)~'/? where n, is the polymer coil concentration given by n, = c¢/(N).
This regime is bounded by region IV on the low concentration side with the bound-

ary being defined by

TIV—vI ~ Cp° (2.50)
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T= p-1c-5/3y-4/3

p3/2n-1

entration

Figure 2.7: A qualitative phase diagram for semi-flexible polymers showing the differ-
ent solution phases. Once again the horizontal axis represents polymer concentration
and the vertical axis represents deviations from the ©- temperature. The labelled
regions are described in detail in the text and tabulated in Table 2.3. The hatched
regions represent the new regions that appear in semi- flexible polymer solutions.
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On the high concentration end the transition to region III occurs at ¢ = r. The
weakly fluctuating regime (VI), is of particular interest to us since our measurements
on DNA, a semi-flexible polymer with p ~ 50, indicates that our solution lies in this
regime.

The origins of these new regimes can be understood conceptually by looking at
the excluded volume interactions. Since the rigidity parameter depends on the link
interactions, v through, p=32 ~ v/d®, we see that any decrease in excluded volume
effects (v — 0) leads to an increase in stiffness. For a stiff polymer the links rarely
cross each other and excluded volume interactions are negligible. Increases in concen-
tration that would normally increase chances of link interactions, can be accounted
for by a virial expansion. In contrast, for flexible polymers the link interactions in-
crease dramatically with increasing concentration (unless the solution happens to lie
near the 6-point) and is not well described by the virial expansion. Thus semi-flexible
polymers are always close to ideal.

In Fig. 2.9 we calculate the phase diagram for A-DNA. We see that Region VI is
greatly enhanced, whereas Region IV is reduced to a minimum. In contrast we also
plot the phase diagram for a flexible polymer, Polystyrene (see Fig. 2.8). We see that
even for polystyrene which is highly flexible, p ~ 2, there is an appreciable region
in which pairwise interactions are dominant. However the phase space spanned by

this region is much smaller than the equivalent region in Fig. 2.9. Our experimental
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Figure 2.8: The calculated phase diagram for PS in THF (tetrahydrofuran), which has
a rigidity parameter, p=2. We see that even in polymers that are considered ‘flexible’
there is a significant region (VI) where mean-field predictions can be applied.

observations, presented in the subsequent chapters, confirm the existence as well as

the extent of the mean field region which is dominated by pairwise contacts.

2.5 Conclusions

In this chapter we have attempted to define the basics of polymer theory that will be
useful in developing polymer depletion models as well as understanding the properties
of DNA in solution. The simple random walk model that can be used to describe

ideal polymers, was expanded to include the effects of interactions between links. The
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Figure 2.9: The calculated phase diagram for DNA from our measurements. We see
that the mean-field region is greatly enhanced. The details are presented in Chapter
5.

next section discussed polymer solutions which contain many polymer coils. Different
theories, such as the self-consistent mean field approach and the scaling theory were
used to derive the physical observables of such solutions. Finally the effects of chain
rigidity in polymer solutions was discussed and compared with properties of com-

pletely flexible polymers. In the subsequent chapters we utilize these mathematical

formulations to understand our experimental observations.



Chapter 3

Polymer Depletion

Entropic effects play an important role in the physics of colloidal mixtures. Important
effects arise when two colloidal species of different sizes interact primarily through
hard sphere repulsions. In this case we find that maximizing of entropy of the smaller
species in the suspension drives the other towards greater order. The tendency for
the larger particle to aggregate is called the depletion effect. The consequences of
depletion are of both fundamental as well as industrial interest. For example, de-
pletion effects must be minimized in the production of paint [35, 36, 37], but can
be exploited for controlled separation of mixtures [35]. Often these processes involve
colloid-polymer mixtures in which the depletion effect is not well understood. In this
chapter we explore the entropic attraction that arises between colloidal spheres in the
presence of non-adsorbing polymers.

We will review the traditional theory of hard sphere depletion, commonly called

the Asakura-Oosawa (AO) model[38, 39]. We also discués polymer depletion models

50
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derived from a mean-field theoretical approach [40]. The polymer depletion problem
has analytical solutions in two different regimes. One regime assumes the colloidal
particles can be approximated as point spheres, and the other regime assumes the
colloidal particles are represented as infinite walls. We also present a comparison
between the mean field approach and the AO Model. Finally we explore the conse-
quences of a distribution of binary mixtures containing a polydisperse distribution of

particles and their effect on the depletion model.

3.1 Introduction to Depletion

Mixtures containing hard spheres with different diameters, but without chemical or
electrostatic affinity for each other, exhibit a surprisingly rich phase behavior as a
result of the size ratio of the two species and their volume fractions. The formation
of crystallites, gel-like aggregates and fluid phases is often observed [41, 42, 43]. The
underlying physics behind these phase transitions can be understood by considering
the forces exerted by the particles on one another. Even though there is no chem-
ical ‘bridging’ between particles, the attractive force between large particles can be
accounted for by steric considerations. Particles tend to congregate by what is called
entropically driven ‘attraction through repulsion’[44], or more commonly, depletion.

The depletion attraction can be described equivalently by two simple arguments.

The first focuses on the kinematics of the collisions [44] between the particles while the
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other involves system entropy [38]. A close examination of a binary mixture, in which
one species is larger than the other shows that particles are constantly colliding with
each other. A sphere that belongs to the larger colloid family, undergoes frequent
collisions with the smaller species which produces a fluctuating force on the large
particle. However there is no net force on the particle since the forces are balanced
in all directions. The physics gets interesting when two of the larger particles are
brought close together so that the smaller species cannot penetrate the gap between
them. In this case the collisions on the ‘outside’ of the two large spheres are no longer
balanced and this leads to a net attraction between them, as shown in Fig. 3.1.

The depletion attraction can also be understood through an entropy argument [38].
The center of mass of the small spheres cannot get within a small ball radius of the
larger particle due to steric considerations. Thus each large sphere is surrounded by a
region that is depleted of the smaller species and the size of the region is determined
by the radius of the small species. This is shown in Fig. 3.2(a). The small species
experience a loss of accessible volume which is equal to the sum of the volume occupied
by the large spheres and the depleted region that surrounds them. Once again if two
of the larger species are brought within a small particle diameter, the two depleted
regions start to overlap as shown in Fig. 3.2(b). The increase in entropy for the
smaller species due to the overlapped volume results in an entropic attraction. A

similar depletion attraction arises due to the overlap of depleted regions between
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Figure 3.1: Collisions balance out forces on the large sphere when they are far apart
however when the mean separation is reduced this leads to a force imbalance which
results in a net attractive force.



Figure 3.2: Depletion in a binary mixture of colloidal spheres. The hatched region
around the larger spheres indicates the depleted region. When the two large spheres
are brought close together these regions overlap, thus increasing the volume accessible
to the smaller spheres. This leads to a decrease in free energy.

spherical particles and walls, or between two walls [36] .

A quantitative picture of the depletion attraction between two spheres was first
realized by Asakura and Oosawa in the late 50’s [38, 39, 44]. By simple geometric
arguments they were able to calculate a functional form for the interaction energy

between two large spheres in a suspension of smaller spheres. The energy is given by

U(T) = —HVoverlap (31)
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where I is the osmotic pressure of the small spheres and Voveriap is the overlap volume
of the depleted regions shown in Fig. 3.2. This can be easily seen if one adopts an
ideal gas picture for the smaller spheres in which their entropy is given by S =
kgIn(Viccessible) Where Viccessivle is the volume available to the smaller spheres. Then
the change in entropy of the small beads, when the larger two particles are brought

in contact is given by
9S = kg NyIn(Viccessivie + Vovertap) — k8 NoIn(Viccessivie) = k8Ny(Vveriap) (3-2)
Thus the change in free energy due to the increase in entropy is given by
O0F = =TS = —kpT Ny(Voveriap)- (3.3)

For the two sphere geometry the overlap volume is given by the lens like geometry
produced where the depleted regions overlap. This then gives an interaction energy

which is given by

Ut = - R () 1 - 35 + 350, 34

c<r<o+2R,,

where I, is the osmotic pressure of the small beads, R, is the hard-sphere radius
of the small spheres, o is the diameter of the large sphere and A = 1 + 2R, /0.
This expression results from purely geometrical considerations and can forseeably be

applied to all 2R, /o, with appropriate changes to the multiplicative osmotic pressure.
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Figure 3.3: The depth of the AO interaction at contact vs. the size ratio of large
particle to the small particle, a/2R,.

What is the magnitude of the depletion effect? Can it be measured? The first
question can be addressed by looking at the magnitude of the interaction for common
colloidal particle sizes. For example, the strength of the contact depletion attraction
between 10um and lum particles, in a suspension where the small sphere volume
fraction is 0.1. can be calculated to be —1.5kgT. This is a sizable effect that can
be experimentally measured. The magnitude of this interaction can be controlled by
varying the size ratio and volume fraction. Fig. 3.3 shows the calculated strength of
the AO model (at contact) for different size ratios varying from ﬁ =1to 2;—5 = 100,
at a constant small sphere volume fraction of 0.1. We see that the strength of the
interaction increases linearly from 0.15kpT to 15k5T, making it a rather sizable effect.

The simplicity of the AO model is appealing, however there are limitations since

the model is based on an ideal gas approximation. Effects such as liquid structure that
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typically arise in solutions are not accounted for by the AO model. These arise due
to neglect of volume interactions that occur amidst the smaller species. This leads
to rearrangements and ordering of the small spheres that ultimately influence the
interaction of the larger spheres. Measurements [45] and calculations [46] show that
liquid structure effects can lead to repulsive barriers and oscillaticns in the depletion

attraction.

3.2 Polymer Depletion

So far we have focused on the depletion effect caused by a binary mixture of hard
spheres. How does this change if we replace one of the components with polymer
coils? From our discussions in Chapter 2 it is obvious that a polymer coil is very
different from a hard sphere. Is it possible to adapt the considerations discussed in
the previous section to explain polymer depletion? This is an important question,
since attempting to understand polymer depletion is not only of fundamental interest
but of technological interest as well. Polymers are widely prevalent in industrial
processes as well as in biological systems. Paint [36], oil recovery [25, 47] and paper
manufacturing all use depletion (and primarily polymer depletion) to achieve their
end products. The new phases recently observed in colloid-polymer mixtures [41, 42]
promise to give rise to new novel processing techniques and materials. In biological

systems, red blood cell aggregation is believed to be induced through depletion forces
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that result from increases in protein concentration [48]. In addition depletion forces
are believed to play an important role in altering shapes of vesicles [49, 50] and lipid
membrane adhesion. Thus an understanding of the fundamental issues regarding this
interaction is of utmost importance.

The depletion model discussed in the previous section was first proposed by
Asakura and Oosawa [38] for a hard sphere-polymer system. The result relies on
the fact that a polymer coil can be modeled as an effective hard sphere, whose radius
is approximately given by the radius of gyration, (Eq. 2.7). This argument ignores
the conformational degrees of freedom of the polymer coil. For example, the AO
model ignores the ability of the polymer to penetrate the gap between the two large
colloids, even when the depleted regions overlap. This could lead to an overestima-
tion of the depletion effect. Moreover it ignores the polymer-polymer interactions
leading to further exaggerations of the depletion force [51]. Thus the validity of the
Asakura-Oosawa case is limited to the regime in which the polymeric solution is very
dilute and it is possible to model the polymer as an ideal gas of hard spheres. In-
cre-sing the polymer-polymer interactions or increasing the polymer concentration
into the semi-dilute region where polymer coils are entangled leads to a breakdown of
the hard-sphere model. These shortcomings have been the focus of many theoretical
works.

Theories attempting to overcome the limitations of the AO model usually include
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Figure 3.4: Polymer depletion in the (a) dilute and (b) semi-dilute regime. The
depletion region is shaded in grey and the hatched region corresponds to the increase
in volume accessible to the polymers.
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refinements by attacking the problem from a mean-field self-consistent approach [40,
52, 53]. The initial mean field approach was first put forth by Joanny et. al. [40] for
depletion in a flat plate geometry. The results were then cast onto a pseudo-scaling
theory to calculate interaction energies. We present the details of this calculation
in Section 3.4, but adapt it to derive results solely in the mean-field limit. Recent
studies have expanded on this result by including polymer-polymer interaction terms
and accounting for the deformability of the polymer. Schaink and Smit [54] include
polymer configurations, excluded volume interactions between polymer links as well
as hard-sphere correlations through the Carnahan-Starling approximation. in their
depletion force calculations. Eisenrielgler et. al [55] also explore mean-field theoretic
descriptions of polymer depletion with colloids that have cylindrical geometry. Odjik
[52, 53] and DeGennes [56] explored a pseudo-scaling theory calculation similar to
the original Joanny treatment with particles that are a lot smaller than the polymers.
The last two studies address issues that might arise in semi-dilute solutions [57, 58]
whereas the first few [54, 55] calculate depletion effects in dilute polymer solutions.
Other attempts to solve the depletion interaction in polymer solutions have used
a variety of techniques ranging from scaled particle theory to computer simulations.
Integral equation methods have been employed to show that excluded volume effects
between polymer links lead to a reduction in the depletion interaction [51, 59]. Sophis-

ticated computer simulations {60] have been used to compare and contrast the results
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predicted by these different approaches and calculate the importance of the different
parameters involved in polymer depletion. In addition, the depletion interaction has
been studied for polymer molecules that can be approximated as long rigid rods [61].
More recently the effects of anisotropic polymer link distributions have been explored
in detail [62]. In this chapter we focus on two simple approaches that enable us to

interpret the qualitative features for the data presented in this thesis.

3.3 Correlation Hole Picture

A physical picture of the depletion attraction can be obtained by looking at two point
particles immersed in a polymer solution [17]. Since the non-adsorbing polymers are
repelled by the particles, insertion of a single particle leads to the formation of a
depleted polymer cavity around it. This region is often called a correlation cavity.
Insertion of the second particle also leads to the formation of a similar correlation
cavity. The second particle is attracted to the region of low polymer concentration
that surrounds the first particle. Thus the presence of a depletion cavity around each
particle produces an effective attraction.

DeGennes [16] presents a simple qualitative argument for this attraction through
a toy lattice-model picture. This is illustrated in Fig. 3.5. In (a) the black dots
represent the immersed particles which, when far apart, allow the polymer to occupy

all four available lattice sites surrounding the particle. At each one of these sites, a
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dimer is restricted to position itself in three different orientations. The entropy of
the system is given by the total entropy minus the loss in entropy at these restricted
sites. Thus the loss is proportional to eight, since there are eight available sites. On
bringing the particles closer than the polymer coil size, the number of available sites
is reduced to six. This leads to an increase in entropy, as there is a loss in entropy
only at six sites. This causes a subsequent decrease in free energy of the system.

An analytical solution for the potential of mean force between these two particles
can be obtained in the limit that the two particles are infinitely small spheres, i.e.
they can be mathematically represented by delta functions [17]. The increase in free

energy of the system due to the addition of the two particles, can be written as
Fogg = u(r) — 1) + / (co + de(x))u(z — r)d%z + / (co + 6c(z))u(z — r2)d%z. (3.5)

The first term represents the bare interaction between the spheres and only depends
on the inter-particle spacing, r = (r; —r,). This could be just a hard core repulsion or
it could also include electrostatic components. The second and third terms represent
the polymer interaction with the ith sphere i.e., u(z —r;), and is weighted by the local
polymer concentration, ¢(r) = ¢y+dc(z). The cost in energy associated with inserting
one particle into the suspension is given by ¢(z)u(z —r;). The additional energy cost,
dc(z)u(z — r;), results from perturbations in the concentration which are introduced
by the presence of the second sphere. Since we are interested in free energy changes

due to these perturbations we can simply subtract off the single particle energies,
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(a)

(b)

Figure 3.5: The lattice model explaining the increase in entropy. In (a) we see that
the conformation of the dimer (shown in grey) is restricted at 8 sites by the presence
of the two particles. However, when the particles are closely spaced (b), there are
only six sites that restrict the dimer configuration, thus leading to an overall increase
in entropy. [16]
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which gives the free energy of interaction as

Fine = u(ry —12) + /5c(x)u(z - rl)d3:z:+/6c(:r:)u(z' —r)d’z (3.6)

-’

Fy F

The free energy can be minimized (see Appendix B), to once again yield an
Ornstein-Zernicke like equation, except that now there are two source terms due
to the presence of the two particles. The resulting differential equation for polymer

concentration fluctuations is,

de 12¢y
2 —_—— =
Vééc & = kTP

g

[u(z — 1) + u(z — r2)] (3.7)

where £ is the correlation length and [ is the length of a polymer link. This closely
resembles the electrostatic analog that can be found for calculating Debye screening
lengths. We can adopt similar techniques and solve for dc(z), using the Green's
function that was calculated in Eq. 2.22. This is done easily in momentum space

where
dc(k) = G(k)p(k)- (3.8)

Here G (k) is the momentum space Green’s function and p(k) is the Fourier transform
of the source term, i.e. the right hand side of Eq. 3.7. The momentum space Green's

function, G(k) is given by

2
G(k) = TI%F (3.9)



65

and the Fourier transform of the source term is given by

_ 12¢ a3z’
Pk = 5.7E | @np

e * [u(z' — r)) + u(z’ — r2)] (3.10)

We can combine Eq. 3.9 and Eq. 3.10 to find an expression for the concentration

fluctuation in real space as

3
de(z) = ((21 1;3 e**5c(k) (3.11)
_ 12¢08® [ &k o [ BT _yo[u(@ — ) +ul@ — )
= kgT2 ] (2n3¢ | @n)t 1+ E2k2

If we rewrite the interaction energy term as e~ ~")e~%Tiy (1’ _r.) and redefine the

Fourier transform of the polymer-sphere interaction potential

1 iz’

=mrl e M) 312

then we can rewrite Eq. 3.11 compactly as

12co§ 3y ikz UkETF + upe 2]
se(z) = / d3ke e . (3.13)

In the above equation we have assumed that the particles are identical and thus have
the same interaction potential, i.e. u(z’' — ;) = u(z’ — ).

Having solved for the perturbations in the concentration we now return our at-
tention to calculating the interaction free energy, F,,. Inserting the above expression
into the interaction free energy expression Eq. 3.6, and looking closely at just one of

the polymer-particle interaction energy terms, F}, gives us

12 2 —ikry —tkra
c°§ / Bz / d3ketks (4 1+§21;:2€ D (3.14)
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Rearranging the terms and using the identity , [ d®ze’**¥)* = (27)35(k + k') we can

rewrite the above equation as

12¢€2kgT [ 5, 1 +etkn-r) -
oy | g e (3.15)

Fy=-
We see that as the inter-particle separation goes to infinity the second term rapidly
oscillates and its integral approaches zero. However, the first term contributes to the
free energy and must be subtracted off to ensure that at large separations there is no
free energy of interaction. Physically, this term represents the free energy required
to insert two independent particles far away from each other. Finally by including

interaction terms due to both spheres, i.e. F} and F5, as well as the bare hard-sphere

interaction term the total free energy of interaction can be written as

ik(r)

12¢o€2kpT 3, € 2
Fint =u(r) —2x (W) /d kmluﬂ

(3.16)
where r has been used as the inter particle spacing, r; — r. The change in the bare
interaction energy manifests itself as a negative term indicating that the interaction
is attractive.

To calculate the functional form for F,., we need to insert an explicit polymer-

sphere interaction potential. This can be done for a few simple cases. If we assume

that the polymer-particle interaction is short range, i.e. a constant in k space, then
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the integral is easy to perform and the resulting free energy is given as

6cokpT e~ /¢
wl? T

(3.17)

F =u(r) -

We see that free energy of interaction has a Yukawa-like form with a range that is

determined by the correlation length £.

3.4 The Infinite Plate Model

The depletion problem in concentrated polymer solutions has been approached from
the other limit as well, i.e. the limit in which the particles are replaced by two
walls. Determining the concentration distribution in this geometry through a mean
field theoretic approach allows for the calculation of the depletion potential. This
approach was first put forth by Joanny et. al. [40] who calculated a monomer density
profile and adopted the results to include scaling predictions. Here we present a
complete mean field description that is extended to account for spherical geometries.

The problem of calculating a density profile is analogous in many ways to solving
for the wavefunction of a particle in an infinite well. The coherent superposition
of amplitudes of the different paths followed by polymer links is given by, ¥(r) in
the limit of ground state dominance. The polymer link wavefunction satisfies the
Schréedinger-like equation discussed in Chapter 2, Section 2.4. Since the infinite wall

geometry reduces the problem to a single dimension we can rewrite Eq. 2.25 as

2 d%y
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Figure 3.6: The schematic of the wall geometry used to calculate the depletion inter-
action. The bottom picture shows the concentration profiles calculated in the different
regions [40].
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where [ is the polymer link length, v is the excluded volume parameter that parame-
terizes link interactions, and ¢ is the eigenvalue of the ground state wavefunction. We
have also used the fact that the mean field interaction potential U(r) = ve(r) = vv?
(Eq. 2.21). The geometry can be further exploited by recognizing that the concen-
tration distribution should be symmetric around the center plane. This implies that
the dy/0z = 0 at z = D/2. In addition the wavefunction, ¥, has to go to zero at the
walls. Eq. 3.18 can be solved by multiplying through by 8v/0z and integrating by

parts. For example,

D/2

o d2w aw D/z 6111 d*v
/d(a & =G -G (3.19)
d?
[ IHEY = &2y
D/2 bj2 D/2 .
Similarly, we see that f dz = 4¢4| and [ dz3¢y = %wzlo . Assuming a
0

value of ¥mar at 2 = D/2, and using the fact that far from the wall, € = vey = vy?

(co is the bulk concentration), yields

2 4 4
SOy u(Ymee V) - i, — v) (3.20)

The value of the maximum concentration between the walls, 2, is lower than the
bulk value, cg, and its value changes as the spacing between the walls is changed. The
geometry, along with the expected concentration profiles is shown in Fig. 3.6. The

full solution to the above equation is given in terms of elliptical integrals and can be
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found in Ref.[40]. However for small z, 1 — 0, and Eq. 3.20 reduces to

6 4 2
(%) = .wz\J _123 'I;Tm:z _ Z_m;z (3.21)

allowing us to obtain an explicit expression for the density profile. Integration of the

above equation yields
2 22€, 2 4
vi=222(*-1n%), 0<z< D/2 (3.22)

where n = ¢2, .. /21¥? and €2 = I2/6vc,.
The polymer concentration distribution, (r) can be used to calculate the free
energy of the system which is given by Eq. 2.29. We can look at the change in free

energy per unit area which can be written as [40]

2
F = [(Fw) - Funlde = [ ds[g (G0 + o0t~ qoe?] (329

where F(yg) = %vwfwz is the unperturbed free energy (N.B.: we have ignored the
translational entropy associated with the links). The change in free energy can be
calculated by utilizing the full solution to Eq. 3.20, the details of which can be found

in Ref.[40]. The change in free energy can be written as

_ kgTeol?
6¢

F f(z/2€) (3.24)

where the function f(z/2€) is found by integrating the full solution to Eq. 3.20[40].

The graphical solution is reproduced in Fig. 3.7.
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Figure 3.7: The function f(z/2£) as the distance between the plates is changed.
We explore two regimes of the free energy change that are of interest. When the

plate spacing is smaller than the correlation length (z < 7€) the function approaches

a linear form as is indicated in Fig. 3.7. The free energy, F, can be written as.

F= kBTCOFi
6§ 2

z < 7w€ (3.25)

On the other hand when the plates are moved far apart, F approaches a constant

value which can be calculated to be

2
F= 1.89cql 3 z>7wE (3.26)

6§

Thus we see that at distances which are less than the correlation length, the force is
a constant but as the separation between the plates exceed 7€ they do not feel each
other, since the free energy is a constant. This is an important result for two reasons.

It gives us a length scale that determines the free energy of interaction and it gives
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us a quantitative description of the depletion forces we would expect to see in these

kind of systems.

3.5 Large Sphere Interactions

The above analysis provides us with a mean field picture of depletion layers near a wall
in the presence of non-adsorbing polymers. However our interest lies in determining
the free energy of interaction when the walls are replaced by colloidal spheres. It
is possible to adapt the solution of the wall geometry to that of two large spheres
via the Derjaguin approximation [63]. In this approximation the sphere is divided
into slices, and it is assumed that a slice from one sphere interacts with a slice on
the second sphere in much the same way as two infinite planes. This leads to the
condition that the spheres should be large when compared to the characteristic size
of the polymers in the background fluid. The total interaction energy between the
spheres can be calculated by summing up the contributions from the different slices.
This is depicted in Fig. 3.8.

Within this approximation, the free energy calculated in the previous section can
be used to calculate the two sphere interaction in concentrated polymer solutions.
We ignore any effects of slices that are separated by more than 7€ and use Eq. 3.25

to write down the surface free energy as

_ kgTel?

F = e (7€ —0—1) (3.27)
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Figure 3.8: The Derjaguin approximation. Two slices separated by z interact with
each other. The contributions from all the slices can be added up to calculate the free
energy. This relies on the fact that the characteristic polymer size is much smaller
than the diameter of the beads.
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Figure 3.9: The free energy of interaction predicted by Eq. 3.28. A large sphere
diameter of o =1.2 units is used along with a correlation length, £ =0.2 units.

The energy dependence is still linear in separation, however by adding a constant,
kBTCo%;(ﬂ'f — o) it is ensured that there are no contributions when r > 7€. Here
r represents the center-center separation of the two spheres, and o is the diameter of
the large spheres. We can calculate the total free energy by simply integrating over

each contributing slice,

F = kgTeo [ drggm(nE —o — 1) (3.28)

= kpTcozzny(n€ — 0 — )2

The free energy is valid from contact, where r = o to the point when the two spheres
are separated by 7§ + 0. A plot of the free energy vs. inter-particle spacing is shown
in Fig. 3.9.

The multiplicative prefactor in Eq. 3.28 can be rewritten by recalling that in
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the mean field theory approximation, the osmotic pressure, II,, of the polymer is
related to its correlation length through, IT, = kgT/£* (see Section. 2.5). Using this
relationship along with the fact that the background concentration, ¢y o 1/£2, allows

us to rewrite Eq. 3.28 as
o 2
F = Hp(1r§-(7r§ ~o—r1)) (3.29)

The free energy is once again proportional to an osmotic pressure times a geometric
factor.

We have presented two approaches that can be used to solve the problem of
depletion forces betweeen two particles in a semi-dilute polymer system. One of the
approaches assumes point-like particles with short range polymer-particle interactions
which results in a free energy of interaction which has a Yukawa-like form. This can
be extended to include longer range electrostatic interactions between the polymer
and the particle. The second method approaches the problem from the opposite end.
An infinite plate geometry is reduced to a large sphere approximation. Both these
approaches provide a quantitative description of depletion in polymer solutions within
the mean-field framework.

Our experimental observations lie in a regime where the characteristic size of the
polymer and the colloidal particle are comparable. Both the theoretical approaches
discussed here do not provide precise predictions for this regime, even though they do

give us a qualitative feel for the depletion interaction. Further theoretical treatments
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are needed in order to understand the differences that might arise in this regime.
In the next section we discuss the possibility of using the heuristic Asakura-Oosawa

model to predict depletion effects in this regime.

3.6 Asakura-Oosawa Model vs. Mean-Field Predictions

The widely accepted Asakura-Oosawa model successfully accounts for depletion in
dilute polymer-colloid mixtures but what happens as the polymer concentration is
increased? Do we have to abandon that picture once we move into a crowded macro-
molecular environment? The answer is no. The field theoretic picture presented in
Section 3.5, can be shown to be equivalent to the AO model in the limit of large
spheres, % > 1. We find that we can extend the use of the simple minded picture
that is easy to grasp into the semi-dilute polymer solution. The extent of the deple-
tion layer is now determined by the correlation length of the polymer in solution as
opposed to its radius of gyration.

The equivalence can be seen by expanding the AO model around o\, which is the
sum of the diameters of the two species. At this point the potential approaches zero
and Taylor expanding yields only second and third order terms. This allows us to

rewrite Eq. 3.4 as

— T 2 1 3
Fai0 = —H,Za/\[(r — o)+ -3—0K(r — o) ] (3.30)

Comparing Eq. 3.29 and Eq. 3.30, in the limit that o > 2R, shows that the two
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models are identical to second order provided we identify R, with 7§/2. The impor-
tance of the third order term in Eq. 3.30 diminishes as the particle-polymer size ratio
increases since R,/c approaches zero as does the ratio of the third order term to the
second order term, i.e (r — o0A)/30A — 0. The multiplicative prefactor, g is also
reduced to o since in the large sphere limit A — 1.

In addition to confirming the validity of the AO Model in concentrated polymer
solutions, the above comparison also provides useful insight into depletion in the
semi-dilute regime. In the semi-dilute region the depletion cavity is determined by
the correlation length and not the radius of gyration. The polymer solution can be
viewed as a close packed system of ideal spheres of size &, that give rise to the depletion
effect. However, unlike concentrated hard sphere solutions, liquid structural effects
are not important since polymeric volume fractions are still very low.

The mean-field treatment of polymer solutions, is valid in the limit in which the
colloidal particles are much larger than the polymer coils. As the size of the two
species becomes comparable this description breaks down. By comparing the AQ
model with the mean-field picture we can explore the differences between the two
models when we get to ratios in which o ~ 7£€. Since the Asakura-Oosawa model relies
on a geometrical overlap factor the form of the potential should remain unchanged
even when the colloidal spheres are smaller than the correlation length. As the size

of the bead approaches £ we expect that the third order term in Eq. 3.30 will become
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important and the functional form of the potential will reflect this change. This
would imply that the depletion attraction can no longer be described by the quadratic
dependence seen in Eq. 3.29 and higher order terms would be needed. However the
Asakura-Oosawa model is phenomenological and first principal derivations as well as

experiments are needed to confirm its validity in this regime.

3.7 Depletion in Different Polymer Phases

We have seen that the depletion potential depends on two polymeric parameters; the
osmotic pressure exerted by the polymer coils and either the radius of gyration or the
correlation length of the polymer coils. Both these parameters in turn depend upon
the concentration of the polymer solution. In this section we expand the predictive
powers of the depletion model to encompass the wide variety of phases that arise in
the polymer solutions as the flexibility parameter, solvent quality and the polymer
concentration is varied (see Section 2.5). These different regimes also lead to differ-
ences in the scaling of the osmotic pressure and the characteristic size of the polymer
as the polymer density is varied. This in turn affects the strength of the depletion
attraction. We include these different scaling behaviors in the AO model to predict
differences that would arise in the depletion interaction.

In the dilute regime the range of the depletion interaction is determined by the

radius of gyration of the polymer coil. However from our discussions in Section 2.5
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we saw that the radius of gyration of an isolated coil varied with solvent quality. For
ideal coils the depletion range would depend on the R2 ~ NI of the ideal polymer
chain, but as repulsive link interactions became important the swollen coil size, (Eq.
2.10), would determine the interaction range. The osmotic pressure would depend
linearly on the polymer coil density and in regions where interactions were strong
higher order virial terms would have to be included.

In the semi-dilute regime the characteristic size, £, changes as the concentration is
varied. For the region in semi-flexible polymers where pair contacts dominate Region
VI), the concentration dependence for the correlation length is given by £ ~ ¢~1/2,
and the osmotic pressure is related to the concentration through, IT ~ c2. This leads
to modifications in the concentration dependence of the AO model. We can express

the AO model in terms of polymer concentration as,

Ur) «m c

kgT ﬁ(sB

3 .
)2(A3, o — §r\/63c,\§,p + %\/GBCT" ) (3.31)

where c is the monomer concentration, B is the second virial coefficient and Ay f is
defined as Ay r = (0V6Bc + ). Equation 3.31 enables the depletion interaction to
be calculated as a function of polymer concentration and the resulting potential is
shown in Fig. 3.10 (solid line).

Similar expressions for the depletion potential can be obtained for other polymer
phases discussed in Section 2.5. The differences in the interaction energies that would

arise in these regimes are illustrated in Fig. 3.10. We see for a fixed concentration,



80

Potential Depth (kgT)

1.5 2.0 2.5 3.0 3.5 4.0
Interparticle spacing ( Arb. Units )

Potential Depth at Contact (k;T)

Concentration

Figure 3.10: In (a) we see the depletion potentials in the different polymer phases.
The potentials are calculated by using an AO model but including the scaling char-
acteristics for each region. The solid line represents the potential in Region VI, the
open circles represents Region IV and the filled circles show the potential in Region
V. All potentials are calculated at a fixed monomer density. In (b) the changes in the
depth of the potential at contact is depicted as the monomer concentration is varied.
Once again the symbols correspond to the phases in (a).
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semi-flexible polymer solutions with two point contacts dominating, (region VI) and
flexible polymers in the fluctuating regime, (region IV) show similar behavior. On
closer examination, however we see that the range of the interaction in semi-flexible
polymer solutions is larger than that in a flexible polymer solution of equal concen-
tration. The strength of the depletion interaction is also larger when compared with
a solution in Region IV. The interaction energy for the same polymer concentration
is much larger in solutions that lie in Region V, where triple contacts dominate.
However the range of the interaction is reduced as seen from Fig. 3.10. Thus we see
that depletion can be driven effectively by polymers that are stiff as well as solutions
which have two point contacts and three point contacts dominating polymer-polymer
interactions. On the other hand if attractive interactions are to be reduced then it is

better to use a flexible polymer in which fluctuations are important.

3.8 Polydispersity Model

So far all discussions on polymer depletion have included an effective polymer size
that can be characterized by either the radius of gyration or a correlation length.
This implies that the molecular weight of polymer can be defined by a single num-
ber. In reality polymers, especially synthetic polymers, have an inherent molecular
weight distribution that is determined by the manufacturing process. For example

polystyrene is usually produced by anionic polymerization [1] which results in a Pois-
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son distribution of molecular weights. Other common processes involve free radical
polymerizations [15, 64] that result in a Gaussian molecular weight distribution.

Another source of polymer polydispersity might arise due to an asymmetric distri-
bution of links. The traditional polymer model uses a random walk model to describe
the distribution of links. This assumes a spherical distribution characterized by the
radius of gyration. However, it has been suggested that random walks are anisotropic
and might be better represented by an effective ellipsoid than a sphere{65, 62]. This
would lead to a change in the shape of the depletion potential. Anisotropic link dis-
tributions might also arise in semi-flexible polymers, where a large persistence length
makes the polymer more rod-like. Alternatively, one might ask whether the depletion
layer formed around the colloidal sphere fluctuates? For instance, the polymer can
extend ‘arms’ into the region, which would reduce the depletion cavity and change
the interaction potential. All these possibilities make it essential to understand the
effect of polydispersity on the AO model. We present a simple numerical simulation
to explore this problem.

We model a polymer by a random walk and use several iterations to produce
different conformational distributions. We then use two different schemes to measure
an effective size. The first is a measure of the mean square distribution or the radius
of gyration. A typical distribution for 10,000 different random walks of 160 steps

is shown in Fig. 3.11. As expected it is Gaussian and is centered around the mean



Figure 3.11: The probability distribution of the radius of gyration for a random walk
consisting of 160 steps.

size. Alternatively we measure the maximum extent of the random walk, i.e. the
effective size is calculated by monitoring the positions of the polymer links that are
displaced the most. This allows us to create a distribution of sizes each of which is
treated as sphere that contributes to the interaction potential. We refer to the second
size measurement as a ‘caliper size’. The resulting distribution is shown in Fig. 3.12.
We see that the distribution is asymmetric and is peaked at a slightly lower value
than is seen for the radius of gyration. It also extends out much further as some
configurations are much larger.

We use both these distributions to calculate a depletion potential. This is done

by assuming that each effective size produces a depletion attraction and the resulting
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Figure 3.12: A probability distribution for thei maximum extent of the polymer coil
which is measured by using the ‘caliper’ technique described in the text.

interaction can be simply given as a weighted sum of all the contributions. The model
assumes that linear superposition holds which is a valid assumption within the AQ
framework, since no second order effects are included.

The potentials calculated from the different size distributions are compared with
the traditional AO potential in Fig. 3.13. We use the mean value of the Gaussian
distribution shown in Fig. 3.11 as the radius of gyration of the model monodisperse
polymer inducing a depletion interaction. The calculated AO model potential is
shown as a solid line in Fig. 3.13. We see that the AO model accuartely predicts the
potential for polymers that exhibit a Gaussian distribution of sizes centered around

the calculated radius of gyration. The asymmetric size distribution on the other
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hand, produces a potential that is weaker but longer ranged. This can be seen more
clearly in the magnified plot shown in Fig. 3.13(b). The increased interaction range
results from contributions from configurations that are much larger than the radius
of gyration. From Fig. 3.12 we see that there is a significant population of sizes that
are larger than the radius of gyration. These larger coils also give rise to a weaker
potential, since they reduce the colloid-polymer size ratio (see Fig. 3.13).

Our simple simulations reproduce the qualitative features of complex calculations
carried out in the literature. Previous experimental reports [66, 67] on the effects of
polydispersity on the depletion potential have indicated that polydispersity gives rise
to instability in colloidal suspensions. Theoretical treatments of this issue have been
limited. Walz [68] explores the effects of polydispersity via a general force-balance
approach. His results at fixed volume fractions are similar to the results shown
in Fig. 3.13, where polydispersity decreases the magnitude of the interaction and
increases its range. Mao [69] explores the effects of polydispersity when higher order
interaction effects are included in rod depletion. Second order effects usually predict a
repulsive barrier in the depletion potential, however Mao predicts that polydispersity
smoothens the depletion force and reduces the repulsive barrier. This is similar to
the exponential tail that develops in the potential obtained in our simulations.

This simple calculation highlights that it is possible to extend the model to ternary

systems and polydisperse macromolecular suspensions. The effects can be clearly seen
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magnified.
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in the calculated potentials. However if the polydispersity is very small, as was the

case in the Gaussian distribution of the radii of gyrations, then the effect is negligible.

3.9 Conclusions

In this chapter we have highlighted the effects that arise in colloid-polymer suspen-
sions due to depletion interactions. We see that traditional hard sphere models can
be mapped onto polymer depletion models to quantitatively predict the interactions.
We will use these results to model our depletion measurements with polymeric DNA
and colloidal silica in the subsequent chapters to confirm both the qualitative as well

as the quantitative nature of some of these theories.



Chapter 4

Experimental Techniques

The ability to quantitatively track the motion of sub-micron probe particles is critical
to this work. To do this, we need not only a microscope with high resolution imaging
capabilities, but also the ability to record high quality video images for analysis. In
this chapter we describe the tools that were used to obtain and process the images

analyzed in this thesis. The procedures used for sample preparation are also described.

4.1 The Microscope

Most of our measurements were carried out on an inverted optical microscope, the
Zeiss Axiovert 135. This is convenient for samples that sediment since they can be
viewed while the slide is mounted face down. For particles heavier than water the
density distribution of particles found near the cover glass is given by the Boltzmann
expression [70], P(z) ~ (1/L)e~*~%/L where z is the distance from the cover glass,
a is the particle radius and L is the characteristic Boltzmann length scale. This

length scale represents the average height traversed by the particle due to thermal

88
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fluctuations and is given by L ~ kgT/Amg where kg is the Boltzmann constant, T
is the temperature of the system, g is the acceleration due to gravity and Am is the
mass mismatch between the particle and the displaced fluid mass. For a 1um silica
particle at room temperature this distance is on the order of 1um. The concentration
of spheres near the coverslip can be conveniently imaged without passing through
too much sample fluid. This is especially important for optical tweezing as a short
working distance (1-10 um) is crucial for stable particle trapping. The instability
arises from the introduction of spherical aberrations in the light beam. Since the
microscope objective is designed to focus a light beam in glass, the index mismatch
between glass and water leads to a cylindrical focal region whose thickness increases
with increased distance from the glass-water interface. As the spread of the beam
into the cylindrical region increases, the stability with which particles can be trapped
is reduced.

It is usually possible to obtain visually acceptable images by simple adjustment
of the sample-objective working distance. However it is necessary to adjust other
optical elements in the microscope when higher quality images are desired. I will
discuss some of the basics of microscopy and the details involved in optimizing the
parameters relevant to the present experiment. A more detailed description on the
inner workings of the microscope can be found in Ref.[71].

Our microscope set-up is displayed in Fig. 4.1. As is true with most microscopes
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Figure 4.1: The Zeiss Axiovert 135, inverted microscope that was used for most of
the experiments.
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the optical path can be divided into two sets of conjugate planes - aperture planes
(shown in Fig. 4.2(a)) and field planes (shown in Fig. 4.2(b)). These planes are
reciprocal to each other, i.e. spherical wavefronts in the field planes are plane waves
in the aperture plane and vice versa. For optimum resolution the optical elements
in the microscope need to be adjusted so that these planes are reciprocally related.
This is called ‘Kohler [llumination’.

The halogen lamp light source (50W HBO, Osram) is positioned at the focus of
a parabolic mirror for optimal light collection. A collector lens (L.) focuses the light
onto the condenser diaphragm (I.) which is located at the focus of the next set of
lenses, called the condenser lens (Lcong). Thus light coming to a focus at the condenser
iris emerges from the condenser lens as a parallel beam. The beam passes through the
specimen and is collected by the objective lens (L,). The focal point of the objective,
also known as the back aperture (B, ), is then conjugate to the condenser diaphragm.
The image at the back aperture is real but inverted. Another set of lenses called
the ocular lens relays this image to the eye-point. Thus the three planes at which
the beam comes to a focus - the condenser diaphragm, the back aperture and the
eye-point, form a set of conjugate planes, usually referred to as the aperture planes.
These planes define different points along the optical path where an image of the light
source can be obtained.

Similarly the reciprocal set of planes, called the field planes define different points
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Figure 4.2: The light path through a typical microscope. In (a) we see the aperture
planes and (b) shows the corresponding field planes. Each point along the path where
the light comes to a focus, in (a) has a corresponding point in (b) where the light
rays are parallel.
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in the microscope where an image of the specimen can be found. The plane in which
the sample is located is relayed through the microscope. This is shown in Fig. 4.2(b).
Images of the specimen plane are found at the field diaphragm (I;) and the field stop
(I,). Alternatively these planes also represent points at which one can find an image
of the field diaphragm.

Most modern microscopes house the lens assemblies in an enclosed mount so
adjustment of the collector lens relative the condenser lens is not usually needed.
However the distance between the condenser lens and the specimen plane and the
distance between the objective and the specimen plane is adjustable to accommodate
for variations in sample thicknesses and sample holders. This makes it necessary
to adjust the optics to optimize distances on either side of the specimen plane. In
the first step, the objective is moved so that the focus lies in the specimen plane.
This defines the working distance. To optimize the distance between the condenser
lens and the specimen plane, the condenser diaphragm and the field iris is set to a
minimum aperture. The height of the condenser is then adjusted so that the image of
the field diaphragm comes into focus. The positioning screws are then used to center
the field diaphragm. This constitutes Kohler illumination.

The next step in obtaining good quality images involves adjusting the illumination
to gain the highest possible resolution while maintaining a high degree of contrast. In

the x-y plane of a focused image each point is diffraction limited and is given by an
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Airy disk. The resolving power is then given by the Rayleigh criterion which yields a

minimum distance, r, to resolve an image to be
r = 1.22X/2N Ag;. (4.1)

Here )q is the wavelength of the light in air, and N Ay; is the numerical aperture of
the objective. For the 100X oil-immersion lens that was used in our experiments this
number is roughly 200nm. The above condition assumes that either the specimen
is self-luminous or the condenser NA is equal to the NA of the objective. When
this is not the case, the resolution is determined by the sum of the condenser and the
objective NA’s which usually lowers the resolution, i.e. r = 1.22)g /(N Agpj+ NV Acond)-

The numerical aperture of the objective is determined by the size of the opening
of the condenser iris. This controls the cone angle of light illumination and is given
by

nsiné
2

R=f = fN Acondenser (4.2)

where R is the radius of the opening, f is the focal length of the lens, n is the refractive
index of the medium between the condenser and the image plane and & is the cone
angle. Increasing the opening size results in a higher NA, however it also reduces
image contrast. Multiply scattered light arising from the optical components leads
to this decrease in contrast. The opening size is selected according to the application
to optimize these two competing effects. For our experiments this iris size was set to

the mid-point of the available range, giving us a NA of roughly 1.2.
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Multiply scattered light, or ‘flare’ as it is called, can also be reduced by the field
iris. In our case the field iris aperture was opened until it was just visible at the edge
of the field of view. Since the field of view for the eyepiece is slightly larger than the
one for the CCD camera, the iris does not show up on the video image.

We use a Plan NeoFluar 100X oil-immersion lens (NA=1.3) as our objective.
Typically oil immersion lenses allow for higher NA’s and are more tolerant of spherical
aberrations. In addition we also increase magnification by inserting another lens that
lies between the objective and the ocular lens called the optivar or tube lens. This
is set to give a multiplicative factor of 1.6 which yields a final magnification of 160.
All the images are recorded are under bright field illumination. Once the sample is
mounted on the stage and the microscope is brought into ‘Kohler illumination’, the
objective is moved up to focus into the sample. It is often difficult to determine when
the focus lies within the sample in a dilute aqueous solution so the edges of the cell
are used to estimate the ‘z’ position.

Optimization of the microscopic parameters is essential for obtaining good quality
images. Since we wish to extract quantitative information from our video images, all
of the above parameters must be optimized so that the resulting images are high

contrast, uniformly illuminated, and diffraction limited.



4.2 Optical Tweezers

The ability to manipulate microscopic objects with radiation pressure was first demon-
strated by Ashkin [72, 73] in the late 70’s. Since then many different versions of the
optical trap and improvements have been demonstrated, most of which have been
designed to operate on commercial microscopes (74, 75, 76, 77, 78]. The primary rea-
son for this is that high NA microscope objectives are ideal for providing the strong
intensity gradients needed for optical trapping. In addition, using a microscope allows
the particles to be visualized while they are being manipulated. We use an optical
tweezer to trap colloidal particles which are in turn used as probes to measure the
properties of surrounding complex fluids. We then scan our trap at a fixed frequency
to confine particles along a line. In this section we discuss some of the details of
forming and scanning traps.

There are several detailed reviews to be found on optical tweezers [79, 80]. I will
briefly outline the physics behind the tweezer and then discuss the relevant details
for our particular trap.

Optical trapping is achieved by radiation pressure. When a beam of light is
incident on an object it exerts two kinds of optical forces on the object. A scattering
force, which pushes the particle in the direction of propagation of the light beam,
and a gradient force which pushes the trapped object in the direction of the light

intensity gradient. Therefore to trap a particle in the focus of a light beam, it is
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necessary for the trapping force to exceed the scattering force which would tend to
push the particle downstream. It is thus necessary to generate light beams with a
large intensity gradient. Once the particle is successfully trapped it can be held in
position and manipulated by moving the light beam. When the particle experiences
slight displacements from the focus of the light heam, it experiences a restoring force
which pushes the particle back to the focus (see Fig. 4.3). Thus it is possible to move
the trapped object within the sample by slowly moving the laser focus around.
Theoretical descriptions of the trapping force are usually given in two regimes.
When the particle size, a, is much smaller than the wavelength of light, A, i.e. a <
50nm for visible light, the Rayleigh scattering approximation holds. In this case
the particle can be approximated as a point-like dielectric sphere and the total force

exerted by the light field is given by [73]

Fiot = Foscae + Ferad (4.3)
E?1287%a% ;m? — 142 njad ;m? -1 9
T 3M (m2+2) o Ty (m2+2)(VE)

In the above equation, ng represents the background index of refraction and m rep-
resents the ratio of the index of refraction of the particle to that of the background
medium. To achieve stable trapping the ratio of the scattering forces to the gradient

force has to exceed unity. For a Gaussian beam incident on a particle of size a, this
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Figure 4.3: The forces exerted on a dielectric sphere in the ray-optic approximation
are shown in the above cartoons. The boxes above each cartoon represent the light
gradient where white is high intensity and black is low intensity. In (a) we see that
the particle sits behind the laser focus. The difference between the incident ray and
the refracted ray provides a momentum pulse that produces an equal but opposite
reaction. This is shown by the grey arrows. The sum of the forces produces a net
force towards the focus (shown by the solid black arrow). In (b) The particle lies
in front of the focus. Once again conservation of momentum requires the particle to
move towards the focus. In figure (c) and (d) the particle is moved off axis. The
resulting forces shown by grey arrows indicate that the particle is pulled back into
the beam towards the focus.
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leads to the condition

3vV3 X, m?-—1
647> a3w§n°/(m2+2) >1

(+.4)
where wq is the laser beam waist. We see from the above stability condition that
several factors control the trapping characteristics, - numerical aperture which deter-
mines (VE)?, the wavelength of light, the index mismatch, etc.

The above scenario is limited to the regime in which particles are much smaller
than the wavelength of light. The opposite case, (a > 1)), can be treated in a ray
optic picture in which the particle essentially acts as a lens. The resulting force on the
particle can be calculated by computing the momentum change experienced by each
ray and then summing the contributions from all the rays - reflected and refracted.
The stability conditions found in the ray-optics regime suggest that maximizing the
cone angle of the incident light leads to a stable trap. In addition the dependence
of the stability condition on the index mismatch has a maximum around n=1.69. A
complete mathematical description of the resulting force can be found in Ref.[79].

The particles used in our experiments however, have diameters that lie between
these two regimes. This presents a complicated scattering picture, and theoretical
arguments do not as yet seem to coincide quantitatively with experimental observa-
tions [79]. Theoretical refinements based on electromagnetic theory [81, 82] have been

proposed and experimental techniques are being developed to reliably calibrate the

optical force [79, 83].
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Even though there is a lack of agreement between theory and experiment, it
is still possible to determine the key factors that control the characteristics of an
optical trap. As already mentioned the numerical aperture plays an important role
and beyond doubt the higher the numerical aperture the stronger is the trapping.
Increasing laser power also helps make a stiffer trap, as does increasing the difference
between the index of refraction of the trapped particle and the background suspension.
Spherical aberration effects are also important. Trapping characteristics are greatly
diminished if there is significant spherical aberration in the laser wavefront. There
are many ways that this can be introduced. Most commonly, non-uniformity of the
coverslip glass and large working depths in the sample volume introduce aberrations
that make trapping difficult. In addition microscope objectives introduce spherical
aberration into the infra-red light beams that are commonly used to form traps, since
they are designed to work primarily in the visible region. Moreover the particle itself
can distort the beam profile causing instabilities in trapping.

From Fig. 4.3 we see that if the particle moves out of the beam the forces acting on
the sphere pull it back to the focus. If the optical trap is moved back and forth slowly
within the sample, then the particle follows its focus. However if the trap is moved
sufficiently fast, i.e. the viscous drag on the particle exceeds the trapping force, the
particle can escape from the trap. For example, the Stokes drag on a sphere of size

a moving at velocity V is given by Fsiwes = 6mnaV, where 7 is the viscosity of the
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background fluid. For a 1um silica sphere in water at room temperature, a velocity of
lum/s gives a force of =~ 1pN, which is a typical trapping force for a 100mW incident
beam. If the scan rate is further increased, the trap returns to the spot before the
particle has had a chance to diffuse away, and the particle is once again momentarily
trapped. By scanning the light back and forth very rapidly it is possible to achieve a
one dimensional potential that confines the particle in two directions but allows it to
freely diffuse in the third, i. e. along the scanning direction.

The physics behind the scanning trap can be understood by examining the forces
on the dielectric particle. In a point trap the energy density stored in the light field
is minimized by placing a dielectric particle at the focus of the light beam. This
gives rise to the gradient force which attracts particles to the region of highest light
intensity. If the region of high light intensity is changed from a point to a line the
particle will once again be attracted to this region. The sphere will be confined in
two dimensions but since there are no intensity gradients along the line it will be free
to diffuse in that dimension. This is the scenario created by scanning a point trap
back and forth rapidly. The particle feels the time average of the electric field and is
trapped on a line along the direction of the scan. The details of trap induced forces
on the particle will be discussed in detail in the next chapter.

To construct a line tweezer there are several practical considerations that should

be taken into account. To get the maximum trapping power we need to focus the
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laser to a tight spot in the specimen plane. In order to achieve this the laser beam
should fill, if not overfill the back aperture. Additionally it is necessary to maintain
the stability of the trap while it is scanned. This requires that as the laser beam is
scanned, it should pivot around the back aperture, so as to maintain overfilling. At
the same time it is increasingly important to minimize spherical aberrations since the
quality of trapping in a scanning trap is highly sensitive to this parameter.

For our line trap we found that we could successfully trap micron sized silica and
PMMA spheres in water but polystyrene spheres were unstable. This is contrary
to the idea that higher index mismatch leads to stronger trapping, since silica and
PMMA have indices of refraction of 1.45 and 1.49 respectively while polystyrene has
an index of refraction of 1.58. We speculate that our system has a large amount
of spherical aberration which in turn has a greater destabilizing effect on particles
with a higher index mismatch. By changing the geometry or objectives it might be
possible to line trap polystyrene successfully (N.B.: this has been previously reported
in Ref.[74] for a ring tweezer arrangement).

To create an optical trap, we used the cw output of a Nd:YLF laser, at its funda-
mental frequency, 1054 nm. We also use a HeNe laser that is collinear with IR beam
to aid in the visualization of the beam path. The cw IR light (and the HeNe beam)
passes through a polarizer-quarter wave plate combination which serves as a power

regulator (see schematic in Fig. 4.4). The light is then coupled into a single mode
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fiber which emerges near the microscope table. Not only does the fiber serve as a
light conduit but it also helps spatially filter the beam. We once again use a polarizer
and quarter wave plate combination, to select a definite beam polarization. This
is important since the shape of the effective optical trap is polarization dependent.
The laser beam induces a dipole moment in the particles. A beam of light that is
polarized perpendicular to the plane of incidence, i.e. s-polarized, induces dipoles in
the spheres that are normal to the scan direction. This results in a repulsive interac-
tion between the spheres that could potentially be useful in separating particles that
would otherwise be aggregated. On the other hand for light polarized in the plane
of incidence (p-polarized), the dipoles induced in the sphere lead to a net attraction
depending on the separation. We use p-polarized light for our experiments.

After polarization selection the laser beam is reflected off a mirror that can be
scanned by a galvanometer. The entire assembly is mounted on a Gimbel mount,
which is positioned so that the back aperture of the microscope can be imaged onto the
center of the mirror. This ensures that small motions of the mirror do not change the
position of the beam on the back aperture thus making it a pivot point. However the
motion results in displacements in the specimen plane. This is shown schematically in
Fig. 4.5. The back aperture is imaged on the mirror through a telescopic arrangement
of two lenses. We mount one lens (L1) outside the microscope assembly and the second

lens (L2) is conveniently mounted in the filter cube of the Zeiss Axiovert 135. We use
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Figure 4.4: The details of the experimental set-up.
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a steering mirror to direct the beam through the fluorescence port of the microscope.
We also insert a microscope slide in the beam path between the two lenses to serve
as a pick-off mirror which directs a portion of the beam into a power meter. This
allows us to monitor the beam intensity throughout the experiment.

The telescope achieves two purposes: it forms a collimated beam whose magnifi-
cation can be adjusted by appropriate choice of focal lengths and it allows the back
aperture to be imaged onto the scanning mirror. In our system the position of the
lens mounted on the filter cube is fixed. This fixes the distance from the lens to the
back aperture, dgpa = 15¢m. The position of the second lens outside the microscope
is set to the sum of the focal lengths of the two lenses so that the combination of L1
and L2 forms a telescope. The distance to the steering mirror d, is then calculated

to be

d= %(fl ‘fo- %dm) (4.3)

where f) is the focal length of the first lens (L1 in Fig. 4.5) and f, (L2) is the focal
length of the second lens. In our system, f; = 40cm and f, = 12.5¢m and the distance
d = 20cm. The beam size at the back aperture wp, is given by ~ (f,/f2) X wm, where
Wr, 1S the beam size at the steering mirror. This is calculated to be wg4 ~ 3mm.
With our present set-up we use 50mW of infrared light to form a line trap which
is scanned back and forth at 180Hz. The galvanometer is driven by a triangle wave

output of a frequency generator with an amplitude of 0.25V. Theoretically this wave-
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Figure 4.5: A telescope formed by lens L1 and L2 images the back aperture plane
onto a point. A mirror mounted on a galvo is placed at the this point. Thus small
rotations result in lateral translations of the focus on the image plane. The grey lines
indicate the beam path when the mirror is rotated slightly.
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Figure 4.6: The optical line tweezer with several particles trapped on the line tweezer.

form should produce a square well optical potential, however non-linearities in the
function generator yield a highly complicated potential. For example the center of
the scan region presents a parabolic potential with a width of 2.5um, which proba-
bly results from non-linearities that arise at the crossover point in the center of the
scan range. At the turn around points the time averaged potential is much deeper
leading to ‘sticky ends’. A video image of the line trap is shown in Fig. 4.6. The
image includes particles stuck at the turn around points, which indicates the length
scanned. This ‘sticking’ probably results from the non-linearities in the motion of
the scanning mirror and spherical aberrations in the beam. It is possible to change
the scanning length by adjusting the amplitude and frequency of the driving signal
(a word of caution, this can result in degradation of the shape of the optical trap at

certain frequencies).
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How does the scan rate affect the optical potential? An extensive survey of the
effects of scanning traps can be found in Ref.[70]. Faucheux et al. observe three
different regimes in their ring tweezer; a slow scan frequency regime in which the
particle follows the trap, an intermediate regime where the particle remains trapped
on the circle but feels a kick each time the optical trap traverses it and a third regime
in which the particle is free to diffuse along the circle. In our experiments the scan
rate exceeds the speed at which the particle would follow the trap. However we
cannot distinguish between the latter two regimes. Video images seem to indicate
that the particles experience a ‘kick’ as the laser scans over them but we see no effect
of this on our measured potentials. This might be due to the bi-directional scanning
employed in the line tweezer set-up. In this scheme the particle gets kicked twice, but
in opposite directions, which possibly leads to a cancellation of the effect. In addition
we measure relative distances between the particles which is likely to be less sensitive

to the impulse imparted, since both particles are affected similarly.

4.3 The Detection System

In order to quantify the observed particle motion, we use fairly standard methods
of video microscopy, (implemented by John Crocker). The analysis scheme has two
parts. The first step involves recording of analog video images, using a CCD camera

and a high end Sanyo VCR (Model GVR S950). The second step involves digitizing
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these images and processing them to obtain particle coordinates.

Video images use up large amounts of disk storage space; a two hour data set
needs approximately 800 Gigabytes of disk space! This hurdle is bypassed by using
an analog recorder - a VCR, and digitizing only small regions of interest, within each
image. Our images are recorded by a Hitachi Denshi CCD camera (Model KPM1U),
which is fitted onto the optical microscope. A mirror deflects the light from the
eyepiece onto the camera port. Our particular camera has an active area which is
768 x 493 pixels. It also has an electronically controlled variable shutter which was
generally set at 1/10000 of a second. The detected image is converted into a video
signal which is recorded on a S-VHS tape by a video deck.

It is necessary to stress that high quality images are needed for accurate mea-
surements. In order to obtain high resolution images we need to optimize the optical
alignment and the electronics used to detect the image. Image contrast was optimized
by adjusting the illuminating light intensity and the gain and offset voltage on the
CCD chip which was controlled by a Hamamatsu Power Supply (Model C2400). Prior
to recording we also make sure that no pixels are saturated and we have the largest
possible working dynamic range.

The video signal recorded has two important aspects that we utilize in our data
analysis scheme. Since each point in the video image is defined not only by a voltage

but also time delay the chronology of frames recorded can be stamped by the VCR
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on the audio channel of the video tape. This proves to be an essential feature for us
as it allows us to return to sections of the tape on a frame by frame basis. We can
access each frame individually through our VCR which in turn is computer controlled
through the RS232 port of a Macintosh 7300 computer using a NIH Image software
package. Another feature that is usually present in video signals is interlacing. Every
frame is dissected into an odd and even field. Each field is constructed by scanning
every other line, 60 times a second. The scanning spot records the even lines on the
screen until it reaches the bottom after which it returns to the top and starts scanning
the second (odd) field. The two fields are then interlaced to provide a composite
image. We exploit this feature to double our time resolution by analyzing each field
independently. The increased time resolution more than adequately compensates for
the degradation of image quality. Moreover, particles that are in motion yield jagged
images which complicate image analysis. Such issues are avoided by analyzing each
field separately.

The second step in video microscopy involves converting the analog images to
digital ones which can then be used for quantitative analysis. This is done through a
dedicated frame grabber card (LG-3, Scion Image) which is installed in the computer.
The frame grabber card receives the signal from the VCR and stores it on the com-
puter. It is also controlled by NIH Image, which allows the user to write Pascal-based

macros [84] to control the functions of the frame grabber card. Our typical macro
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allows us to grab small regions of interest at user defined start and stop times. This
lets us automate digitization of an entire videotape, which is equivalent to 200,000
frames. For most of the interaction measurements a small spatial region of interest
centered around the two spheres was chosen. The size of this area for 1.1um spheres
at 160X was usually chosen to be 40 X 112 pixels. Images were grabbed in 30 second

blocks and could be directly stored on the server used for image processing.

4.4 Image Analysis

The digitized images were all analyzed on a UNIX platform using IDL (Interactive
Data Language, Research Systems Inc.). The image analysis can be divided into
several steps. The first step involves correcting for background effects such as intensity
gradients and inhomogeneities, which will subsequently be referred to as ‘Aat-fielding’.
The digitized images are then separated into even and odd fields and a centroid
calculating algorithm is used to locate the centers of the particles in each field.

a) Flat-Fielding

Since the emphasis of video imaging lies on accurate location of particles it is
essential to make sure that there are no systematic errors which lead to pixel biasing.
In images that are recorded under bright field illumination, there are two sources
of inhomogeneities that might arise. The light source may provide a non-uniform

illumination of the specimen or the sensitivity of the CCD pixels may vary across
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the chip. A combination of both these effects can lead to undesired features in the
images. To prevent this, an image usually called the ‘flat’ is recorded at the end of
each data set. Unless lighting conditions are changed between sets of acquired data,
this need only be done once. The ‘flat’ image is an illuminated field of view that is
devoid of any features. This is usually done by focusing up into the cover glass or
finding a region in the sample that is featureless. At the same time a ‘dark’ frame is
also recorded. This measures the thermal response of the CCD chip in the absence
of a light source. The ‘dark’ frame was usually recorded by turning the halogen lamp
on the microscope to the lowest setting.

The flat and the dark frames are used in a standard algorithm to calculate the
background image which is then subtracted off the actual image. The background

offset is calculated by

=7 (46)

b=

where f and d is the deviation of each pixel from the mean value of the flat and dark
frames represented by f and d, respectively. The gain is given by g = (f — d)/(f —d).
The value of each pixel in the dark and flat frames represent two points defining the
gain and offset associated with each pixel. The above formula maps the gain and
offset of each pixel onto the values calculated for the mean. The flat-fielded image is

calculated bu subtracting, (g * image + b), from the original image.
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b) Centroid Calculation

After the image has been flat-fielded the centroids of the spheres are calculated.
This is done by locating the brightest pixel in a user defined region. It is further
required that this pixel lie in the top 30th percentile of the bright pixels since the
brightest pixels correspond to the particle centers. The pixel is located through a gray
scale dilation scheme. In this scheme all pixels are set to the maximum value in a
defined region. Then the pixel in the original image which corresponds to this value is
chosen as a candidate. A circular mask is then placed at this location and a brightness
weighted centroid is calculated. If the centroid value differs from the position of the
brightest pixel by more than 0.5 pixels then the centroid is recalculated. A detailed
description of this technique can be found in Ref.[85].

A second refinement is added to correct for biasing that may result due to bright-
ness changes. Overlapping of features or changes in brightness due to reflections
induced by one sphere on the other might lead to pixel biasing. This is especially
significant when the spheres are close together. We correct for this effect by reflect-
ing the centers of each of the spheres around the centroid of the other sphere, and
selecting an area around this point. The inverse of this region, which is of the size
of the spheres, is subtracted from the original image. This effectively removes the
contributions from the tail of the brightness distribution of one sphere that underlies

the intensity profile of the second sphere. The process is graphically illustrated for an
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artificially generated image, in Fig. 4.7. The algorithm is iterated to get further re-
finements. The resulting positions are stored in a file along with the radius of gyration
of intensity distributions, eccentricity, and a ‘mass’ distribution which corresponds to
integrated brightness. The details of procedure routines and calling sequences are

given in Appendix C.

4.5 Sample Preparation

When working with biological samples it is necessary to handle small sample vol-
umes. Most of our experiments were carried out in small microchambers, whose
cavity volumes could be easily controlled. The simple design is shown in Fig. 4.8.
The coverslips and microscope slides used were bought from Fisher Scientific Inc.
and were 18mm x 18mm and 0.17mm thick (nos. 1.5). All coverslips and microscope
slides were handled with powder-free nitrile gloves to prevent finger grease contami-
nation. In addition they were cleaned by a methanol wipe to remove any particulates
that might be present. We found that using these precautions lowered non-specific
adhesion of the colloidal particles to the glass surface. The coverslips are attached
to the microscope slide by Parafilm strips cut into a ‘L’ shape, and arranged so that
they form a square with two channels left open for sample loading. The volume of
the cavity is controlled by changing the width of the L’s. A heating plate was used

to melt the Parafilm sealing the coverslip to the microscope slide.
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Figure 4.7: This figure shows a schematic of the centroid calculating algorithm used
to correct for overlap. In (a) we show two spheres modeled as parabolic caps, with a
small overlap region. The sum of the two parabolic functions is shown in (b) which
is analogous to the image we measure. We then locate the two maxima and reflect
the image around each of these points. This is shown in (c) as the dashed lines. The
mirror image of (c) is subtracted from the original image (b) to obtain the location
of the two particles shown in (d) and (e).
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SPECIMEN

Figure 4.8: A typical sample cell. The grey region represents the Parafilm.

The channels are used to inject the sample into the chamber. A small drop placed
near the opening is drawn in through capillary action. The mouths are then sealed
with vacuum grease to prevent evaporation. This provides an adequate chamber to
hold samples and if carefully prepared can be kept for days, without significant drying
of the sample. There are of course obvious changes that can be made to accommodate
other considerations. For instance one of the channels can be easily used to insert
and hold a micro-pipette tip, thermocouple, capillary tube, etc.

The Colloids

The primary source of colloidal spheres used in these experiments was Bangs Lab-
oratories Inc.. The spheres used were usually 1.1um diameter anionic silica spheres.
The surfaces of these spheres are terminated by a hydroxyl group, Si-OH which gives
them their negative charge. Since our model polymer, DNA is also negatively charged
the anionic sphere-polymer interaction is repulsive and can be controlled by changing
the background ion concentration. Most of our experiments were carried out at low
ionic concentration, ~ 10mM where the electrostatic interactions are screened, mak-

ing the particles and polymers effectively ‘non-interacting’ on larger length scales.
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Silica particles were chosen for these experiments since we found that the more com-
monly used polystyrene spheres could not be effectively trapped in the line tweezer
and PMMA spheres seemed to have occasional tethering problems probably due to
the presence of a ‘hairy’ polymer layer on the surface. For the two sphere inter-
action measurements the colloidal samples were diluted to final volume fraction of
10~7. We found that at these concentrations it was still relatively easy to find two
particles, however the sparseness also prevented stray particles from drifting into the
experimental region.

For the multi-particle tracking experiments described in Chapter 6, fluorescently
labelled polystyrene spheres (Molecular Probes Inc.) were used. Since polystyrene
has a density close to that of water, 1.05g/cm3, the density of the background solution
could easily be adjusted to remove buoyancy forces. This was done by using a mixture
of water and heavy water, H,0 : D,O =1 : 1. The exact volume fraction of colloidal
spheres was not known for the multi-particle tracking experiments since the samples
used were pre-filtered through 2um filters to remove aggregates. The number is
estimated to be around 10~*. In both sets of experiments the colloidal particles were
diluted in the buffer that was used for the DNA molecules. For particle tracking

experiments aqueous buffers were replaced by the heavy water-water mixture.
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4.6 DNA Preparation

For the purposes of this thesis we needed a model monodisperse polymer with a size
range that was larger than a hundred nanometers but still within a couple of microns
this would allow us to clearly resolve the measured length scales and at the same time
not have it exceed the size of our optical trap. Most commonly available synthetic
polymers have sizes that lie in the nanometer regime with a few that can be specially
synthesized to yield larger lengths. In addition the polymerization processes used to
synthesize these polymers produce a wide distribution of molecular weights, which
would introduce significant polydispersity in our measurements. These limitations
are easily overcome by biopolymers which provide a vast resource for experimental
polymer physics. Additionally, studies on these polymers often reveal interesting
structural and mechanical properties that help us better understand their biological
functions (86, 12]. In this thesis we use DNA as a model polymer to study conforma-
tional properties of macromolecules in solution. They easily fulfill the requirements
necessary - i.e. monodispersity and a large size-scale. Moreover, biochemical tech-
niques allow structural and topological changes that can change interactions from the
angstrom regime all the way up to the micron region, with a high degree of accuracy.
This makes biopolymers particularly valuable for opening up areas of study that are
difficult to access with synthetic polymers. In this section we discuss certain basic

handling and biochemical protocols used for these molecules.
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The DNA molecule is made up of sugars, phosphates and nitrogen bases that
arrange themselves in the well known double helical structure (see Fig. 4.9). The
sugars and the phosphates form a backbone on the outside and the nitrogen bases
pair up to form a ladder structure in the interior region. The nucleotides (= sugar
+ phosphate + nitrogen bases) come in different varieties, however bonding only
takes place between specific pairs. For example, Guanine (G) only bonds to Cytosine
(C) and Adenine (A) only binds to Thymine (T). This allows the identification of a
complementary strand given a single strand of a known sequence.

The double stranded DNA structure is formed by complementary nucleotides poly-
merizing to form the helical structure. The nucleotides bind together through phos-
phodiester bonds, i.e. the hydroxyl groups attached to the 3’ carbon of the sugar.
bonds to the phosphate of another nucleotide. The single strand has a chemical ori-
entation; one end is labeled the 3’ and the other is called the 5 end. The 3' end has
the hydroxyl attached to the 3’ carbon of the sugar and the 5' end has a phosphate
group attached to the 5' carbon of the sugar. The double stranded DNA is formed
by bonding between two anti-parallel single strands, i.e. one chain orientation runs
from 3’ to 5’ while the other runs from 5’ to 3'. These orientations become important
when considering enzymatic activity.

The spacing between base pairs in the double stranded DNA is 3.4 Angstroms and

10 basepairs form a single twist resulting in a helical pitch of 3.4 nm. This helical
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10 base pairs

Figure 4.9: The helical structure of double stranded DNA. The outer backbone is
formed by the sugars and the phosphate groups. The inside is primarily composed of
nitrogen base pairs.
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secondary structure gives rise to the long persistence length that is found in DNA
molecules. In most common buffers the persistence length is measured to be 50 nm.
In contrast single stranded DNA has a persistence length of only 2 nm. However.
sufficiently long double stranded DNA still form random coils.

For our experiments we use a 16um long DNA called lambda phage DNA. Lamb-
dapahge is a virus with a very simple DNA structure. It invades E.coli bacteria
and uses the native DNA to replicate. Enzyme digestion of infected E. Coli and
subsequent purification produces abundant quantities of lambdaphage DNA. In the
bacteria, A-DNA exists as a plasmid (i.e. it is circular), but subsequent digestion
produces linear lambda, which is exactly 48,502 base pairs long.

I. Fill-in, cutting and ligating

On each end of the linear DNA produced by digestion of plasmids, there is an
overhang of single stranded DNA that is 12 base pairs long. These are often referred
to as ‘sticky ends’. This is a result of the digestion process in which the restriction
enzyme cuts the plasmid A-DNA (See Fig. 4.10) diagonally. As a result the sequences
on the two ends, CAATTG, and GAATTC are complementary, and have a tendency
to close on themselves or attach on to other lambda DNA in solution forming plasmids
and multimers.

A-DNA with cohesive ends can be commercially bought from numerous companies

(New England Bio-Labs, Promega Inc., Gibco etc.). It is usually shipped in a buffer
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Figure 4.10: An example of a restriction enzyme that cuts double stranded DNA
diagonally, leaving a single stranded overhang on the two different pieces.

which contains, 10mM Tris-HCI (tris[hydroxymethylJaminomethane hydrochloride)
and 0.1mM EDTA (ethylinediaminetetraacetic acid) and has pH=8.0. Tris-HCI serves
as buffer for biological reactions whereas EDTA serves as a preservative that keeps
bacteria from growing in the solution. It depletes the solution of divalent ions such
as Ca** which are essential for bacterial growth.

The affinity of the complementary ends is a problem for our measurements since
we are interested in properties of linear polymers that are monodisperse. The forma-
tion of random plasmids, dimers and trimers are not acceptable. Fortunately, DNA
biochemistry has developed many tools that prove to be invaluable for our purposes.
(Most of the biochemistry used here was done at the DNA Sequencing Facility (con-

tact: Liz Geiger, Richards Building, 573-7407), however, with the right equipment
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and a little bit of experience it can be done in our laboratory as well. There is a
whole family of enzymes that can manipulate and selectively alter DNA strands. The
cohesive ends can be ‘filled in’ with one such enzyme called T4 DNA Polymerase.
This enzyme, in the presence of a special buffer (T4 DNA Polymerase Buffer which
contains 50 mM NaCl, 10mM Tris-HCl, 10mM MgCl,, 1mM dithiothreitol (pH7.9,
25C)), BSA (Bovine Serum Albumin) and dNTP’s (nucleotides), adds nucleotides to
the 5’ end that overhangs the 3’ end and removes the 3' overhang to form a blunt
end. Since A-DNA has two overhanging 5’ ends the addition of T4 DNA Polymerase
to a solution containing A-DNA, and nucleotides (in the presence of Mg2?*) leads to a
“fill-in’ reaction ( for details see flow-chart in Fig. 4.11). This specific function of the
enzyme is termed its ‘ 3' — 5’ exonuclease activity’.

It is important for our experiment that there are no remnant proteins or divalent
ions left behind. The DNA is subsequently purified through a phenol-chloroform
extraction. This resuspension procedure is also used for changing salt concentration
of buffers. The addition of equal amounts of phenol and chloroform renders the
solution a ‘poor solvent’ for the protein leading to the formation of an aqueous and
an organic phase. The mixture is centrifuged and the aqueous solution is carefully
removed with a pipettor. This step is repeated several times till there is no visible
murky interface between the aqueous and organic phases. The last few extractions

are done with chloroform only since it easily evaporates, which reduces the chances of
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T4 DNA Polymerase
+ + BSA (Soug/mi)
-« incubate at 12C for 30 mins
«» Deactivate by incubating at
¢ 75Cfos 10 min
Repeat Phenol:Choloroform; 1:1, Room Temperature

t Centrifuge, 12,0009

Carefully pipette
off aqueous
layer

Figure 4.11: The different steps of the fill-in reaction. T4 DNA Polymerase adds
nucleotides from solution to single tranded DNA.
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contamination in the final solution. The DNA is then precipitated out of the aqueous
solution by adding ethanol. Subsequent washes with 70% ethanol help rinse out salts
that might have precipitated along with the DNA after which it can be resuspended
in the buffer of choice. As an additional precaution we also centrifuge the solution in
a micro-centrifuge tube fitted with a filter with a nominal molecular weight marker
which facilitates the removal of low molecular weight impurities.

The myriad of restriction enzymes available for modifying DNA opens up the
possibility of changing the size of the DNA (N.B.: the restriction maps can be found
at the back of the New England Biolabs catalog). We modified the DNA length by
using XBa I, an enzyme that cuts A-DNA into two nearly equal segments of 24,508 and
23,994 base pairs. This results in half-cut DNA which should have a radius of gyration
which is smaller than that of A-DNA by a factor of 1/v/2. The topological structure
can also be changed, by ligating the two cohesive ends of lambda DNA. The number
of available configurations for the resultant plasmid would be constrained resulting in
a change in the entropic attractions studied in this thesis. We were not successful in
producing plasmids with the last procedure since ligation produced highly entangled
DNA leading to problems in solution homogeneity. However theoretically it should
be possible to produce plasmids with an improved technique.

II. Electrophoresis and Spectroscopy

The lengths of the DNA produced through restrictions as well as the possibility
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of fragments introduced through handling was checked by gel electrophoresis. The
DNA molecule is a strong polyelectrolyte carrying half a unit of negative charge on
each base pair. The molecule becomes oriented in a electric field and moves through
a gel matrix. The rate at which it moves through the gel is determined by the length
of the molecule in addition to other factors. For example, larger molecules move
less efficiently since they are more likely to get caught in the pores than smaller
molecules. Thus DNA conformation plays an important role and this procedure is
often used to distinguish between, circular, nicked and linear DNA. In addition, the
properties of the gel also determine characteristic pore sizes which control migration
rates. Applied voltages, buffer composition and temperature are other factors that
affect gel migration. During gel electrophoresis, the DNA samples are loaded into
small wells in the gel along with a marker DNA which is used for calibration. The
different DNA’s simultaneously migrate across the gel and the distance traveled can
be related to the size of the DNA.

We used a 3% agarose gel made with Tris-Borate Buffer. A Teflon comb is inserted
into the gel before it sets to create small wells to hold the DNA solution. These serve
as the start of ‘lanes’ along which the DNA migrate. The DNA are stained with
Blue/Orange 6X Loading Dye (Promega Corporation) which serves two purposes. It
helps the DNA settle in the well which in turn ensures uniform migration through the

gel. In addition the visible dye molecule can be used to monitor the DNA migration
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Figure 4.12: A picture of a typical gel. The DNA is stained with Ethidium Bromide
and the picture is taken with UV illumination. The three lanes shown contain, half-
cut A-DNA, A\-DNA and ligated \-DNA. We see that neither of these migrate as far
into the gel as the marker DNA which is usually Hind III fragments.

through the gel as it has a mobility which is similar to that of short DNA. Along with
the test DNA a calibration DNA such as Hind III Marker (Promega Corporation)
fragments are also loaded in one of the wells. The samples are equilibrated for 15
mins at 0V after which a 50V DC signal is applied across the gel for 2 hours or
till the dye molecule reaches close to the end of the gel. The gel is then soaked in
ethidium bromide which fluorescently stains the DNA molecules allowing each lane
to be viewed under a UV lamp. The DNA contour length can be calculated by
comparing the distances moved by the calibrated marker DNA and that traversed by

the test DNA. A typical gel run is shown in Fig. 4.12.
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The concentrations of DNA in solution is checked with a spectrophotometer since
DNA has a strong absorption feature at 260nm which is directly related to the number
of basepairs in solution. The concentration can be related to the absorbance by Beer’s

law which is given by

c=2= (4.7)

Here 4 is the absorbance, which is defined as the logarithm of the ratio of the incident
light, Ip to the transmitted intensity, I, A = log(Iy/I). The length of the sample that
the light traverses is denoted by [ and € is the molar absorbtivity of DNA which is
0.02ml/pg.cm. A 0.05 cm long quartz cell was used for the absorption measurements
which are carried out in a Perkin-Elmer Spectrophotometer. The quartz cells are
cleaned in an ultrasound with methanol prior to use. A typical absorption spectra is
shown in Fig. 4.13. The spectra also reveals information on the purity of the DNA
since the 260 nm absorption is dominated by the nucleosides whereas at 280nm the
absorption results primarily from proteins in solution. This is given by the ratio of
the absorbance at 260nm to the that at 280nm. A completely pure sample presents
a ratio of 1.8. All samples used here had a ratio that was higher than 1.6.
II1. Protocols

Handling DNA calls for several protocols that are usually not commonplace in
physics laboratories. A relatively clean environment with sterilized water and con-

tainers is needed since bacterial contamination must be prevented. All micro-pipette
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Figure 4.13: An absorption spectra for a DNA solution. The dashed curve represents
the absorption spectra of the buffer taken in a quartz cell. The increase in absorption
around 200nm arises due to the cut-off of UV transmission in that regime due to the
container. The DNA absorption is pronounced at 260nm.

tips, micro-centrifuge tubes and buffer solutions were autoclaved (i.e. they were ster-
ilized at high pressure at 120° C for 20 minutes). The DNA is stored at -20° C and
freeze thaw cycles are minimized to reduce sample degradation. The commercially
obtained A\-DNA is fairly robust. However, the filled in, ligated and half cut DNA are
more susceptible to degradation. Additional measures such as blunt edged pipettor
tips and slow stirring are used to prevent DNA breakage. Pipetting small volumes
of viscous fluids is highly susceptible to error. To avoid variances in concentrations
all DNA solutions were weighed on a sensitive Denver Instruments balance (M220D)

which has an accuracy of 0.01gm.
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IV. DNA Labeling

It is also possible to directly visualize DNA in the microscope by labeling the DNA
with a fluorescent dye such as Ethidium Bromide, Acridine Orange or YOYO-1 (87,
88]. Most of these dyes are weakly fluorescent in solution, however upon DNA binding
the fluorescence activity is greatly enhanced. For example, YOYO-1 has been shown
to produce enhancement factors of 1400 [87] making DNA visualization relatively
easy. Binding occurs by intercalation between the base pairs. Ethidium Bromide and
Acridine Orange fully intercalate between the base pairs and have strong electrostatic
interactions with the phosphate groups. YOYO-1 also intercalates between the base
pairs though full intercalation usually takes much longer than it does for the other
dyes. However all degrees of intercalation leads to an increase in DNA contour length.

All visualizations of DNA were done with YOYO-1 (Molecular Probes Inc.) la-
beling. This dye absorbs in the blue (491nm) and emits in the green (509nm) which
is very similar to the commonly used dye, fluorescein. This makes it convenient to
use as most microscopes are fitted with a FITC filter ! to accommodate these wave-
lengths. The manufacturer recommends incubating one YOYO-1 molecule per 20-50
DNA base pairs for 2 hrs. For quick and easy visualization we found that diluting the
stock dye solution to 1 ng/ml and incubating with the DNA for 10 minutes provided

samples that could be easily visualized.

IFITC is an acronym for the dye, fluoroscein isothiocyanate, and is commonly used to label
processes that need blue excitation and emit in the green.
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The biggest problem encountered in DNA visualization is bleaching. The free
oxygen in the solution reacts with the dye molecule in the presence of light, quenching
fluorescence activity. Visualization under a 100W arc lamp leads to bleaching in a
couple of seconds. Therefore low intensity laser excitation on the confocal microscope
was used to produce most of the images presented here. The 488nm line of an Argon-
Krypton laser was used to excite the dye molecules. Motion of the DNA coupled with
bleaching exclude the use of averaging techniques. Reasonable images were obtained
when the illuminating intensity was kept at 30 percent of the available power and the
gain of the photomultiplier tube was turned up. Addition of anti-fade agents, also
helped increase the visualization time. A mixture of glycerol, glucose oxidase and
catalase was used as an oxygen scavenger. Each milliliter of Tris-HCI buffer contained
100ug of catalase, 500ug of glucose oxidase and 100ug of glucose (all chemicals can be
obtained from Sigma). Visualizing times could now be extended to 15 -20 minutes.

Fig. 4.14 displays various images of DNA obtained under the microscope.
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Figure 4.14: Fluorescent images of DNA with YOYO labelling. In (a) we see two dif-
ferent views of K-DNA which is formed by a number of interlinking plasmids forming
a cup like structure. In (b) we see images of \-DNA. Individual coils can be visualized
and seen to re-arrange their configuration. In (c) the A-DNA have been stuck to the
glass and stretched out by a controlled convective drying process. The entire length
of the DNA can be visualized and measured.



Chapter 5

Equilibrium Interactions

So far we have discussed the theoretical and experimental background needed to
explore the interactions that arise in colloid-polymer mixtures. In this chapter we
present measurements that probe the functional form of the interaction potentials
in these suspensions. We explore the nature of these potentials over a wide range
of polymer concentrations from dilute solutions to the semi-dilute regime in which
polymers coils are strongly entangled.

This chapter is organized as follows. In Section 5.1 we review the general ex-
perimental procedures that were used to measure the depletion potentials in DNA
solutions. In the next section, Section 5.2, we discuss the methods used for data
analysis. Details about how we extracted measured potentials from raw images is
presented in this section. The results are presented in Section 5.3. Here the scal-
ing of the fitted parameters, i.e. the osmotic pressure and the radius of gyration,

are compared with theoretical predictions. Physical properties such as the second
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virial coefficient and solvent quality are extracted from our measurements and then
discussed extensively in Section 5.4. Finally in Section 5.5 we explore how the in-
teraction potential changes as we vary polymer-colloid size and the background ionic

strength of the solvent. The last section briefly summarizes the work.

5.1 General Experimental Procedures

We measured two-particle interactions with colloidal silica spheres in a background so-
lution containing A-phage DNA. The particles were trapped on an optical line tweezer
and their motion was imaged for 30 minutes at video rates. The data collection time
periods were extended to an hour when the potentials were weak in order to im-
prove the statistical accuracy of the data. Throughout the course of the experiment
we monitored the laser trapping power and the distance of the laser focus from the
microchamber wall. Because changes in laser intensity can lead to variations in the
strength and the shape of the potential, the laser power must be kept constant. The
laser intensity was monitored using the light reflected by a pick-off mirror that was
inserted in the beam path. At this spatial position the laser power was ~ 13mW and
fluctuations were kept to within 0.5mW, by manual adjustments.

The distance between the coverslip and the laser focal plane varied as a result of
a mechanical flaw in the nosepiece of the Zeiss microscope. Occasional and irregular

mechanical drifts caused the focus to drift upward toward the coverslip wall. These
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distance variations could lead to changes in the shape of the optical potential due
to changes in the focusing characteristics of the beam. In addition the observed
potentials could be distorted as added interactions between the particles and the
wall could affect the particle dynamics. To minimize these detrimental effects. the
microscope focus was adjusted every three minutes. The focal depth from the wall
was optimized at 3um, which is approximately three times the maximum polymer
size. These distances are large enough to avoid wall effects, yet short enough so that
the trap is not weakened by spherical aberration. At larger depths the out-of-plane
motion of the silica spheres increased thereby indicating that the strength of the
optical trap had weakened. The distance from the chamber wall was monitored by a
focus-drive motor (ASI, Model MFC-1) that controlled the focus of the microscope.
While holding two beads in the line trap the focal plane (which also defines the
position of the line trap) is lowered to the coverslip wall which causes the image of
the two spheres to blur. This indicates that the trap position has reached the coverslip
wall. We define this as the zero position and for our experiment the focal plane was
moved 3um into the sample. This technique would usually yield an accuracy of
+0.5um in the measurement of the focal distance.

We also made measurements on samples containing only silica spheres suspended
in buffer (TE buffer) solution. These were then used to remove optical effects from

our sample measurements, which will be discussed in detail in the next section. The
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buffer measurements were made immediately before and after each DNA sample so

that differences resulting from drifts were minimized.

5.2 Calculation of the Potential

Video images were digitized and analyzed in accordance with the procedures discussed
in the previous chapter. Particle positions were extracted using these methods; these
data were then used to calculate interaction potentials. If the system is in equilibrium,
then the probability, P(r) of finding the two spheres with centers separated by r is
related to the free energy of the system through the Boltzmann relation, P(r) o«
exp(—U(r)/kgT), where U(r) is the free energy, kg is the Boltzmann constant and
T is the temperature. We estimate this probability distribution from a histogram of
the measured separations and then calculate the interaction free energy by taking the
natural logarithm of this distribution.

There are two features of the line tweezer that aid in estimating the probability
distribution, P(r). The line tweezer creates an optical potential that confines the
spheres in the y and the z direction, but allows them to freely diffuse over a certain
distance in the direction of the scan, i.e. the r direction. Along the scan direction,
particle diffusion is limited to the length of the line scanned by the laser beam. This
optical cage along the z direction is highly desirable as it forces the two particles

closer together and thus reduces data collection times. In addition to the statistics
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Figure 5.1: A typical probability distribution function that is obtained for the relative
separation between two particles in a buffer solution

required to accurately characterize the potential we also need to be able to determine
the three dimensional inter-particle separation, r. In a typical microscope image in
which particles are not confined, it is only possible to measure the two-dimensional
projection of the actual three dimensional separation. The line tweezer confines the
motion of the particles to the focal plane (within 50nm); thus the two dimensional
separation is equal to the three dimensional separation of the spheres. This greatly
increases the spatial resolution of our measurements.

Although the line tweezer is a useful tool that aids in improving measurements

of the probability distribution, it also introduces optical forces that complicate the
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Figure 5.2: In (a) we see a parabolic potential characterized by a spring constant,k.
In (b) the strength of the potential is characterized locally by parabolas (dashed
lines) which have different spring constants. This does not allow for a separation of
the potential into a contribution from the relative co-ordinate and the center-of mass
coordinate

interpretation of the measured distributions. The measured free energy now contains
contributions from the trap in addition to the entropic attraction we wish to probe.
One of these forces arises due to the optical cage that exists along the scan direction.
The motion of the particle is determined by the shape of the potential created by the
laser beam, which in turn depends on the subtleties of the scanning characteristics.
For example, if the laser beam slows down during the middle of the scan, the higher
time averaged field attracts the particle to the center of the scan region. Such spatial
variations in the trapping characteristics affect the probability distribution, P(r), of
the particles and are apparent in the measured potentials. In addition the light can
also induce dipole moments in the dielectric spheres which then interact to produce
short range repulsions. The latter effect is found to be minimized by choosing light

that is polarized perpendicular to the scan direction.

The optical artifacts introduced by the line tweezer can be removed for some simple
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cases, such as a ‘flat or a parabolic optical potential. If the optical potential is spatially
independent over the region of interest then the measured potential only depends on
true interactions in the suspension. However if the trap has spatial variations then
at each point in space there is a force that is exerted on the particles. The total force
on each sphere is the sum of the entropic forces and the trap induced forces. In the

harmonic approximation, the total force on the ith sphere can be written as
Fioe = Fony — ki(ri)(xi — 1) (5.1)

where the local strength of the trap is characterized by k;(r;). The equilibrium po-
sition of each particle is given by ¥; and F,,, represents the entropic force. For two

particles in such a trap the effective potential U,y is given by
1 PR | _ 2 .
Utotal(rly 1'2) = Ue,.t(lrl - rzl) + 5’61(1’1)(1‘1 - 1'1) + 5]62(1‘2)(1’2 - 1'2) . (02)

Here Uen:(|r, — ry|) represents the entropic interaction potential we are interested
in measuring and it only depends on the relative separation of the two particles,
r=|r; —ryf.

If the optical potential is spatially independent then the last two terms in Eq. 5.2
are constants that just provide an additive offset to our data. On the other hand if

the trap is parabolic, k; = k2 = k then U can be rewritten as

1
Usota (£, R) = Uone(5) + 5 ke + %kRz (5.3)
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where R = 1(r, + r,) is the center of mass co-ordinate of the two particles and
r = (r; — rp) is their relative position co-ordinate. Since the entropic interaction
potential we are interested in measuring depends only on the relative co-ordinate,
we can decouple the interaction potential into two parts; one that depends solely
on the relative separation of the spheres and the other part that depends on the
center of mass co-ordinate. This would not be possible for potentials which cannot
be approximated by a single harmonic well such as those shown in Fig. 5.2. The
different optical strengths would lead to optical forces on each particle that could not
be easily separated from the entropic forces. To verify the validity of our data, we
made independent measurements to ensure that the potential is parabolic. This was
done by trapping a single particle and calculating its potential from a histogram of
its positions. The motion of the particle maps out the shape of the potential which
is shown in Fig. 5.3, which is indeed parabolic.

In the special case in which the optical potential can be exactly determined, the
above constraints can be relaxed. For our experiments we use a subtraction technique
that allows us to remove the optical effects. This is shown in Fig. 5.4. We measure the
potential between two spheres in a buffer solution that is DNA-free. This serves as our
background potential and is subtracted off from the potentials measured with DNA
in solution. We fit the background potential measured in the pure buffer solution to

a second order polynomial outside the repulsive core region. This reduces artifacts
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Figure 5.3: A typical optical potential. The solid line is a parabolic fit with a spring
constant of ~ 0.5k5T/um?. The potential is measured by trapping a single particle
in the trap and letting it trace out the optical forces.

that might arise due to polydispersity and also prevents the introduction of additional
noise. Fig. 5.4(a) shows a typical buffer potential with an overlaid parabolic fit.
This subtraction technique relies on the fact that the optical properties of the
solution do not change when DNA is added to the solution. Thus there are no changes
in the trapping characteristics and the buffer measurements accurately represent the
optical potential. In our measurements the optical properties (i.e. the refractive
index) do not change noticeably over the range of DNA concentrations used. If
this optical potential was not parabolic we would also need to apply an additional
criterion which would require us to sample all possible center-to-center separations.
For example, if the background optical potential was not separable into center-of-mass

co-ordinates, R, and relative co-ordinates, r (Eq. 5.3), then measurements made in
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the r co-ordinate system would depend strongly on the value of the R co-ordinate.
Theoretically this effect can be eliminated by averaging over all possible ensembles.

However, experimentally it is difficult to explore the entire phase space.

5.3 Interaction Potentials

To quantitatively interpret our data we turn to the depletion models described in
Chapter 3. We utilize all three models, i.e. the AO Model (Eq.3.4), the mean-field
predictions (Eq.3.28) as well as the interaction free energy that is predicted for two
point like particles (Eq.3.17). In all cases we let the osmotic pressure, IT and the
correlation length be free parameters and obtain values from the best fits. Fig. 5.5
shows the measured interaction potential at a DNA concentration of 140ug/ml with
overlaid fits. We see that attempts to fit the potential to the Yukawa like free energy
of interaction predicted for two point spheres (Eq.3.17) is not successful. The fit
underestimates the depth of the potential and fails to describe the shape at large
distances. On the other hand the potentials can be well described by the AO Model
as well as the mean-field model. This is not surprising since the second order terms
of the two models are identical (see Chapter 3, Section 3.4). The importance of the
third order term in Eq.3.29 can be determined by looking at the ratio, (r —o\)/(30 ).
For our experimental conditions, this ratio varies from 0.33 in the dilute limit to 0.08

in the semi-dilute region, reducing the significance of the third order term.
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Figure 5.4: The filled circles in (a) and (b) represent the raw potentials measured in a
pure buffer solution and a DNA solution respectively. The solid line in (a) represents
a fit to a quadratic function. The third plot (c) shows the result of subtracting the
solid fit from the measured potential shown in (b). This removes the optical effects
if the optical properties of the solution haven’t changed. The flattening of the final
potential (c) indicates that indeed the optical potential between (a) and (b) did not
change for the two samples.
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fits with a two parameter fit to the models described in the text.
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In this section we choose to leave in the third order term and adopt the Asakura-
Oosawa (AO) depletion model to interpret our data. Qur mea;ured potentials are fit
with Eq.3.4 treating [I, and R, as free parameters. Since our method only determines
the potential up to an undetermined additive offset, we shift the potential curves
vertically so that the potential at long-range is zero.

The resulting potentials for all measured DNA concentrations display a long-
range attraction. The lower concentrations exhibit shallow potential wells and the
longest interaction range. As the concentration is increased, the potential wells get
progressively deeper and the range contracts dramatically. Throughout the range of
concentrations explored, we observe a shrinkage in the range of the well from 1um to
about 300nm and, at the same time an increase in well depth from 0.5kgT to 5kg7T.

We can then divide our observations into measurements in the dilute regime and
the semi-dilute region. For \-DNA the crossover concentration that divides these two
regimes can be calculated from the size of an ideal coil. Since the persistence length
for A-DNA is 50nm and the contour length is 16um, the effective radius of gyration
is calculated to be R, = m ~ 510nm. This yields a crossover concentration
value of ¢* = (N4/Mw)((47R3/3))~' ~ 60ug/ml, which is roughly consistent with
mobility measurements that probe, ¢*. Pernodet et al. [89] use gel electrophoresis to
study the the mobility of fluorescently labeled DNA at different concentrations, and

determine the overlap concentration to occur around 35ug/ml.
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5.3.1 Dilute Region

The measured interaction potentials for the dilute regime is shown in Fig. 5.6. In the
dilute solution the effective polymer radius R, should equal the radius of gyration
of the polymer, R, and the fitted osmotic pressure should depend linearly on DNA
concentration ¢, n, (i.e. II, = nykgT). Here n, represents the number of polymer
coils in solution and can be related to the monomer concentration through n, = ¢/N,
where N is 48,502 for A-DNA. The first three data points in Fig. 5.9 and Fig. 5.8
correspond to the fit parameters of the dilute regime. The observed trends agree with
the predictions for a dilute polymer solution- the effective diameter of the polymer is
measured to be 1.1 £ 0.2um and is independent of the concentration. This value also
agrees well with light scattering measurements for R, [89] in similar buffers which
yield Ry ~ 500nm.

The osmotic pressure displays a nearly linear behavior, although the measured
prefactor of 0.5+0.3 obtained for this fit deviates from the expected hard-sphere value
of unity. The relatively large error for the parameters in the dilute limit is a result of
the shallow well-depth of the interaction curves. In addition the long range also tends
to increase the uncertainty in determining their vertical offset. On the other hand the
deviation in the prefactor might arise because the effective volume occupied by the
polymer (i.e. the multiplicative volume term in Eq. 3.4) can no longer be described

by a sphere [62]. For instance any anisotropy in the random walk configuration could



147

U(r)/kT

R

[®]

S

s\
(e

=

L =3
3

-4 — —

1.6 1.8 2.0
separation(micron)

Figure 5.6: The measured interaction potentials in the dilute regime. The filled circles
are measured data points and the solid lines are fits to the AQ Model
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lead to non-spherical distributions whose effects could be partially accounted for by
a different multiplicative pre-factor in the equation for the interaction potential. The
reduction in the prefactor has also been attributed to polymer-polymer interactions.
Neutron scattering experiments that probe the structure factor of colloid polymer
solutions observe a similar reduced linear virial coefficient [25, 90].

From our measurements in the dilute regime we can conclude that the Asakura-
Oosawa model provides a good fit to the depletion potential. We are able to extract a
range and an osmotic pressure, from our potentials. We find that the polymer size we
probe does not change with concentration, an observation that is consistent with the
predictions in the dilute concentration regime. However the osmotic pressure deviates
from the expected linear virial predictions. Currently measurements on half-cut \-
DNA are underway to reduce the uncertainty in the dilute regime measurements.

This will enable us to better understand the origins of the measured deviations.

5.3.2 Semi-Dilute region

The behavior of the interaction potentials changes dramatically in the semi-dilute
regime. Beyond the critical concentration, the range of the potential starts to contract
and the depth increases significantly. The potentials are shown in Fig. 5.7. A best fit
to parameters extracted from the data yields R, = (0.4+0.05)n, %% and I1,/ksT =

(0.8 £ 0.2)n2?*%2 where R, is measured in um and n, and II,/kgT in (um)~3. The
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relationship between the ‘effective size’ and n, has a measured scaling exponent of
—0.5 & 0.1. This strongly suggests that the polymer solution lies in the weakly
fluctuating regime for semi-flexible polymers. The —3/4 exponent predicted for the
strongly fluctuating semi-dilute region (V) lies outside the measured error bars. The
exponent corresponds with the predictions that are made for a correlation length.
§ ~ n”!/? and not for what is expected for the radius of gyration, R, ~ n='/8 [16].
This indicates that range of the interaction is determined by the correlation length
and it further corroborates our substitution of (7/2)¢ for R, in the AO model (see
Chapter 3, Section 3.4).

The measured exponent of 2.2 +0.2 for II, as a function of n,, has too large of an
error to distinguish the predictions of 2.25 for the strongly fluctuating regime from
the value of 2 for the weakly fluctuating region. This is probably a result of the
greatér uncertainty associated with the well depth measurements.

We also examined the dependence of the pressure versus the correlation length.
This plot further confirms that the semi-dilute DNA solution lies in the weakly fluc-
tuating phase where two point contacts dominate. In this regime mean-field theory

predicts that the pressure is related to the correlation length [16] through
I = kpT/¢* (5.4)

From Fig. 5.10 we see that our data exhibits an exponent of —3.9 + 0.1 which cor-

responds closely to the mean-field prediction, but excludes the value of -3 that is
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Figure 5.7: The interaction potential between two 1.25um silica spheres, in (a) the
dilute and (b) the semi-dilute region. The dimensionless potential U(r)/kgT is plotted
as a function of r, the inter particle distance. The open circles represent actual data
points and the solid lines are fits to the AO model, as described in the text.
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Figure 5.8: In (b) the filled circles represent the fit parameter R, (we have used
§=(2/m)R, in the semi-dilute regime) in microns is plotted against different polymer
concentrations. The solid lines represent fits to mean field theory predictions and are
described in detail in the text. In the graph n, = (47/3)R;* =~ 1.0um™3 marks the
crossover from the dilute to the semi-dilute regime.
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Figure 5.9: In (a) we present the scaling behavior of the osmotic pressure vs. the
concentration. The vertical axis represents II/kgT and the horizontal axis is concen-
tration in units of number density.
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Figure 5.10: In (a) we present the scaling behavior of the osmotic pressure vs. the
correlation length. The vertical axis represents II/kgT and the horizontal axis is
proportional to £ in units of microns. The solid line represents a fit which yields a
measured exponent of 3.9 + 0.1.

predicted for flexible polymers with strong fluctuations.

5.4 Second Virial Coefficient

Our measurements also allow us to determine the solvent quality of the buffer suspen-
sion which is widely used in DNA preparations by microbiologists. A simple measure
of the solvent quality is given by the ratio of the measured radius of the polymer coil

to the radius of gyration that would be expected in an ideal solvent [17]. This ratio,
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a, is usually called the swelling parameter, and from our measurements in the dilute

DNA solution we calculate this to be

R
a=———=1.15+0.2. 5.5
Rigeat (5:5)

At the theta point , @ = 1. Thus the value of our swelling parameter indicates that
the DNA in our solution is close to being ideal. We can further utilize the swelling
parameter to calculate the >z parameter (see Chapter 2. Section.2). The swelling

parameter, a can be expanded in terms of z to give
2 4 -
a =1+§z+.. (5.6)

from which we can calculate a z value of 0.25+0.03. Since z = 1 defines the transition
between ideal coils and swollen coils, our measured value of z definitively indicates
that our solution lies close to the #-point. We also use the z parameter to calculate the
second virial coefficient, by using the relationship (see Chapter 2, Section 2.4), B =
(2/2)(27/3)3/2(NZ"/*)13. The measured z parameter yields B = 2.99+0.4 x 10~5um?.

The above results are cross-checked by comparing with the measured virial co-
efficient in the semi-dilute DNA solution. This is estimated from the slope of the
osmotic pressure data to be B = 3.1 +0.8 x 10~3um? since, [I, = BNgn?. Our mea-
sured value can be converted to more conventional units Ay = NyBNZ% /M2, which
yields AY = 4.8 + 1.2 x10~* mol-cm®/gm?. This result is comparable with previous
light scattering measurements that estimate this number to be AT =2.84+1.2x10™*

mol-cm3/gm? [20].
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The known second virial coefficient, and the relationship between B and z (Eq.2.31
from Chapter 2), enables us to calculate a value for the z parameter from the semi-
dilute results. This yields z = 0.248+0.01 which is very similar to the results obtained
from the dilute regime estimates. This further confirms the interpretation of our data.

Another internal consistency test of the interpretation of our data. compares the
measured correlation length &,, = (2/7) R, with the theoretically predicted correlation
length & = [,(6BN.gn,)~/? that can be calculated using the measured B. This
predicts that &n}/? = (0.28 + 0.03)um!/2, whereas, Emny/? = (0.25 £ 0.03)pm'/2.
These numbers agree within error estimates.

The measured z parameter can be used to precisely place our experiment on
the phase diagram for semi-flexible polymers. Using the persistence length and the
number of effective links, N.g we can calculate a phase diagram for our solution
following the discussion in Chapter 2. The expected phase diagram for DNA with our
measured second virial coefficient is shown in Fig. 5.11. The cross-section sampled
by our experiments is shown in the diagram as a dashed line. We calculate the
7 value from our measured second-virial coefficient by using the relationship, 7 =
B/(dl3) ~ 6 £ 1. We see that our experimental results lie close to the theta point.
At our calculated value of z, our data traverses Region I where we expect a dilute
solution of Gaussian coils and then passes into Region VII. This region looks similar

to Region I in terms of observable characteristics (i.e. variations of 7 and £) and could
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Figure 5.11: The DNA phase diagram, calculated by using the values measured from
the interaction potential. The dashed line represents the phase space explored in this
experiment.

explain why our measured overlap concentration appears to be higher in value than
the calculated c*. For further increases in DNA concentration, the polymer solution
enters regime VI which is consistent with the scaling characteristics we observe. This
is an unambiguous test of the theory of semi-flexible polymer solutions that has not
been seen clearly to date.
Size Ratio Effects

As a control, we also measured the depletion effect with a different sized colloidal
sphere. The potentials for the two different sizes, 1.25um and 1.55um, at a DNA
concentration of 60ug/ml are shown in Fig. 5.12. We see that the hard sphere re-

pulsion for the two sizes turns on at different separations as would be expected. The
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Figure 5.12: The interaction potential between two different sized spheres measured
in DNA solution of 60ug/ml. The filled circles represent the interaction potential
between the 1.25um and the open circles represent the 1.5um spheres.

parameters obtained for correlation lengths and osmotic pressures are similar within
error bars, as would also be expected. This lends further credence to the fact that
the observed depletion potential arises due to polymer induced entropic contributions

and is not an artifact of the sphere size chosen.

5.5 The Effects of Monovalent Salt

We investigated the changes in the depletion attraction that arise due to changes in the
ionic strength of the solution. The salt concentration is used to control the repulsive
attractions between the DNA links. By decreasing the amount of monovalent salt the

range of electrostatic interactions can be increased. The Tris-HC] salt concentration



157

was varied from 0.1mM to 50mM. changing the screening length from ~ 30nm to
~lnm. As a result of the increased repulsion range the persistence length changes
dramatically. From previous measurements of force versus extension on dsDNA. an
exponential change in [, from 0.5mM to 50mM is observed. The persistence length
goes from 0.9um to 0.5um over this range [12]. This leads to a change in the number
of effective links. For A-DNA, N.g goes from being 160 to ~ 80.

We measure the entropic interaction potential in each of these buffers. At the low
salt concentrations the DNA was precipitated from the regular TE buffer by phenol-
chloroform extraction and resuspended with care in low salt Tris buffer. At the high
salt concentrations, 25mM and 50mM, small amounts of the surfactant (=~ (0.2—0.8) x
CMC where CMC =2.7 x 10~4mol/kg, 59 micro-molar), Tween 20 (polyoxyethylene
sorbitol esters), was added to the solutions to maintain colloidal stability. Surfactant
concentrations were kept below the critical micelle concentration (CMC) to prevent
attractions that might arise due to micellar depletion. Control measurements of inter-
sphere potentials in DNA solutions, were made in regular TE buffer (10mM Tris-HCI)
as well as in TE buffer that contained surfactant (once again surfactant concentration
was under CMC) to determine whether Tween 20 had adverse effects on the DNA
coils. No differences were observed when the potentials are compared. However even
in the presence of surfactant we could not explore solutions with salt concentrations

higher than 50mM. Colloidal stability was destroyed which lead to irreversible particle
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Figure 5.13: The interaction potential in solutions containing different amounts of
monovalent Tris-HCl. The ranges of the potentials were measured in the dilute regime
(20 pg/ml) (open circles) and the semi-dilute regime (100ug/ml) (filled circles). Sur-
prisingly the range shriks at low salt concentrations.

aggregation.

The potential between the two silica spheres was measured at different salt concen-
trations in both the dilute (20ug/ml) as well as the semi-dilute regime (100ug/ml). No
significant changes were observed for salt concentrations between 10mM and 50mM.
This trend is similar to light scattering observations {21}, in which no significant
change was observed in the measured radius of gyration. However the potential at
small salt concentrations (0.2mM, 0.5mM and 1mM) yielded anomalous short range
potentials. The measured correlation lengths decreased in size as the salt concen-

tration was lowered. Previous measurements on DNA with different monovalent salt
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Figure 5.14: A YOYO-1 labelled DNA in 0.1mM buffer. In general the DNA images
appear to be more anisotropic than in regular 10mM buffer.

concentrations have shown that the persistence length increases dramatically [87] at
low salt concentrations. This effect leads to a reduction in the number of effective
links, strongly affecting the anisotropy of the polymer. One possibility for a decreased
range of the potential could arise due to this anisotropic distribution of links. In fact,
direct visualization of A-DNA in the 0.2mM buffer shows a more anisotropic distri-
bution of links than what is seen in the regular 10mM buffer. Fig. 5.14 an image
of DNA in 0.1mM Tris solution. Individual DNA molecules in this lower salt buffer
appear to have a more anisotropic distribution when compared to those in the higher

salt buffer.
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5.6 Conclusions

To summarize, we measured the interaction potentials for a colloid-polymer mixture
consisting of anionic silica particles and polymeric A-DNA. The resulting potentials
are the first simultaneous measurements of the range and depth of the interaction po-
tential between two colloidal particles in a polymer solution of varying concentration,
including a regime where the semi-flexible chains are strongly entangled. The range
of the measured interaction potentials was found to be related to the radius of gyra-
tion of the polymer in the dilute regime and the correlation length in the semi-dilute
region. The depth of the potentials was found to increase linearly with concentration
in dilute DNA solutions, however a near quadratic dependence was observed after the
overlap concentration was exceeded. In both concentration regimes the AO Model
was successfully used to fit the interaction potentials. As expected the dilute region
can be envisioned as a solution consisting of polymer coils which act as hard spheres
of size R,. Surprisingly the model can be extended into the semi-dilute region, where
the polymer solution is described as a gas of uncorrelated hard spheres of a radius of
= (2/7)R,.

The colloidal particles also act as a gentle probe that monitors the polymer be-
havior in solution. Qur observations present strong evidence for transitions from a
near ideal dilute solution to a semi-dilute regime which is dominated by pair-wise

contacts and is predicted to exist to only for semi-flexible polymers [33, 34]. More-
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over our analysis allows us to quantitatively determine the solvent quality. Changes
to the solvent quality brought about through changes in the ionic strength showed
anomalous behavior at low salt concentrations. The resulting decrease in interaction
range might result from an anisotropic distribution of links caused by an increased
persistence length.

Our model-independent potentials serve as an exemplar for the microscopic inves-
tigation of a broad range of questions that commonly arise colloid-polymer solutions.
Most importantly they provide a functional form for the interactions that are inher-
ent in these suspensions. They also highlight the important role that the polymeric
phase plays in driving depletion. The comparable size ratio of the colloid and the
DNA used in our experiments also ventures into a previously unexplored regime that

often arises in nanometer scale solutions.



Chapter 6

Particle Dynamics in DN A solutions

The dynamical properties of colloidal particles in DNA solutions are of wide ranging
interest. From electropheretic migrations through gels to chromatographic separa-
tion techniques, understanding the motion of beads in mesh-like polymer solutions is
extremely important. Moreover, recent interest in probing the in vivo properties of
cellular environments has lead to the development of numerous techniques to measure
the microrheological properties of minuscule volumes of complex fluids [91]. One such
technique follows the motion of colloidal probe particles suspended in the medium
of interest. The trajectories are monitored by, centrifugation, light scattering and
most recently by video microscopy. In all of these experiments the material prop-
erties of the medium, such as the viscosity, moduli etc. are then inferred from the
motion of the particles. Data interpretation relies on the fact that the diffusion in
the complex fluid is described by the Stokes-Einstein relationship, and therefore the

spheres probe the background viscosity of the solution. In this chapter we examine
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the hydrodynamic interactions between the probe spheres in the background solution
of DNA.

Previous studies have examined colloidal dynamics in different polymer back-
grounds. Quasi-elastic light scattering has been used to probe the dynamics of latex
spheres in a polystyrene polymer solution [92]. Other studies have varied the composi-
tion of the colloidal particles, or varied the background dispersant [92, 93, 94, 95, 96].
Pioneering work using sedimentation techniques was done by Langevin and Rondelez
[97]. They probed the properties of a polyethylene oxide (PEO) solution with var-
ious colloids ranging from latex spheres to globular bovine serum albumin. More
recently sedimentation of colloidal particles (CaCQOj; with adsorbed calcium alkylben-
zene) through poly-ethylene-propylene (PEP) [98] has been used to test the theoret-
ical scaling predictions of the viscosity[16]. In all of these studies, with perhaps the
exception of the last one, the equilibrium interactions between the colloid and the
polymer were not well characterized. This can be a critical issue because adsorp-
tion and inhomogeneities tend to complicate the interpretation of data resulting in
differing viewpoints of colloidal diffusion in polymer solutions.

Our DNA-colloidal system is ideally suited for studying the dynamics of beads
in different background concentrations. Having developed an understanding of the
characteristic entanglement lengths and colloid-polymer interactions, we can now use

this system to study dynamic properties of such mixtures. This chapter explores two
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aspects of the bead dynamics in DNA solutions. The first part is dedicated to the
problem of a single sphere diffusing in a background polymer solution. We explore the
dynamics of different sized particles as a function of polymer concentrations. The sec-
ond half of the chapter studies the hydrodynamic interactions that arise between the
two beads in the presence of a polymer background. As colloidal concentrations are
increased the inter particle spacing decreases, and hydrodynamic interactions become
important. We study these effects by looking at the mobility of two spheres at close
range. The results presented in this chapter represent our preliminary investigations
into this system; further work is currently underway.

In this chapter I will first discuss the diffusion of single particles in a background
of DNA. We use video microscopy to monitor the motion of the colloidal spheres,
and relate the time evolution of their mean square displacements to the diffusion
coefficient. We explore the diffusive nature of these colloidal spheres by looking at
several different sized particles in background solutions of varying DNA concentra-
tions. We find that the simple Stokes-Einstein equation is insufficient for relating
the observed diffusion coefficients to the background viscosity. These measurements
show that spheres whose sizes are comparable to the polymer mesh size probe the
solvent viscosity. Particles feel the effects of the polymer background only when they
are much larger than the characteristic entanglement length. This suggests that the

depletion cavity and the hydrodynamic coupling of the bead to the polymer solution
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strongly influence the observed dynamics. We also explore bead dynamics in a DNA
background for separations wherein the hydrodynamic coupling is important. This is
done by confining the motion of the two beads in an optical trap and extracting their
relative mobility. Our results clearly show the effects of screened hydrodynamics in

polymer solutions.

6.1 Brownian Motion

The role of thermal forces affecting Brownian motion was well studied in the early
part of this century. The problem is usually approached from either the Einstein-
Smoluchowski equation or through the Langevin formalism [19, 99]. The first ap-
proach, examines the concentration gradients created by the thermal variations in
the particle velocities and suggests that the diffusive behavior arises due to the net
flux between the created inhomogeneities. This is usually modeled by Fick’s law which
relates the net flux j(r, t), of the particles to the concentration gradient c(r), through.
j(r,t) = —DVc(r), where D is the diffusion constant. The probability distributions
for particle displacements are calculated by demanding that the number of particles
be conserved. The Langevin approach, incorporates the thermal fluctuations through
a stochastic force. We present a brief description of the latter formalism and see how

it is related to our observed particle motions.
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6.1.1 Langevin Formalism

Perhaps the simplest approach to describing the motion of a particle in a fluid is
to examine the forces acting on it. For simplicity we focus on the physics in one-
dimension. The equation of motion for the particle is given by [99]

d’z dz

maE = @

+ f(2) (6.1)
where m represents the mass of the particle and z is its position. The forces acting
on the particle are characterized by the two terms on the left. The first, (dz/dt
represents the viscous drag on the particle the magnitude of which is determined by

the friction coefficient, (. Most commonly, the strength of the friction coefficient is

given by Stoke’s Law which ignores inertial effects. This is given by
¢ =6mna (6.2)

where 7 is the viscosity of the fluid and a is the particle radius. The second term
in Eq. 6.1, f(t) represents the stochastic forces acting on the particle that arise due
to thermal fluctuations. There are several assumptions that are made about these
fluctuating forces in attempting to solve the Langevin equation. It is assumed that
these forces are independent of the particle velocity and uncorrelated at different
times, i.e. < f(t)f(t + At) >= §(A(t)). Under these assumptions, Eq. 6.1 can be
multiplied by z(t) and rewritten as
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where we have used the fact that zd?z/dt? = %%[ﬂ?] - (%2) and zdz/dt = ‘1(-2%22.

Now if one considers the ensemble average of all the particles in solution, there are two
simplifications that can be made. Since the random force and the particle positions
are completely uncorrelated, < zf(t) >= 0. Secondly we can use the equipartition
theorem, 3m < (dz/dt)? >= 1kgT, to replace the second term on the left hand side

of Eq. 6.3. The equation can now be written as
——+ 2u =kgT (6.4)
where < ﬂiﬁ > has been replaced by u. Solutions to this equation are then given by
u = 2kgT/( + const.e¢4/™ (6.5)

Since we are interested in solutions where inertial effects are negligible, i.e. (/m > 1,
the second term in Eq. 6.5 can be ignored. Substituting for u and further integrating

vields

2kgT

c t. (6.6)

<z*>-<zl>=

where z is the initial position of the particle. This can be rewritten using the Stokes-

Einstein result, D = kgT/(, as
<z*>-<zl>=Az?=2Dt (6.7)

where D is the diffusion coefficient of the particle.
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From the above equation, we see that measurements of the mean square displace-
ment of a particle as a function of time, can be used to extract diffusion coefficients.
In addition, the probability distribution P(z,t) for particle displacements, z, in time
t has a second moment that is given by Eq. 6.7. Since the nature of this distribution

is closely related to the fluctuations of the thermal forces, the probability distribution

g:—(:!t!)!z .
for Gaussian fluctuators, is given by ——W,—e %=, where < z(f) > is the first

moment of the distribution and ¢ is its second moment. Substituting Eq. 6.6 for o
and the mean particle position z; for the first moment, P(z,t) can be written as

1 z—z0)2

P(z,t) = —(4 L

(6.8)

The Gaussian distribution, directly reflects the random nature of the thermal forces.
Deviations from this form often indicate the presence of other forces.

So far all the results have been derived in one dimension. This can be easily gen-
eralized to three dimensions since the motion along each dimension can be decoupled.
The mean square displacement in 3-D is given by < Ar? >=< Az? > + < Ay? >
+ < Az? >= 6Dt. The total probability distribution is now given by the product of
the distributions in each direction, P;p(r) = Wﬁ Sr_ﬁ'L where rg is the mean
position of the particle. For our experimental measurements we consider probability
distributions in only the z direction. This is because the interlacing (see Chapter
4) in the y direction presents complications in image analysis that might affect the

measured distributions. We use Eq. 6.8 to describe the measured probability distri-
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butions for particle displacements. The next section describes these experiments in

detail.

6.2 Single Particle Tracking Measurements

In a homogeneous viscous medium, the diffusion coefficient of a particle is related to
the viscosity of the background fluid through the Stokes equation. Monitoring the
motion (and therefore the diffusion coefficient) of the particles enables us to calculate
the viscosity of the solution. In a polymer solution the analysis can be complicated
by the inhomogeneities in the medium. These may arise due to interactions between
the bead and the polymer or due to entanglements that are present in concentrated
polymer solutions.

Let us examine the causes of these inhomogeneities in further detail. The in-
troduction of a bead into a polymer solution can lead to modifications in the local
environment due to polymer interactions. For example if these interactions are at-
tractive the polymer will adsorb on the surface of the particle, altering the effective
hydrodynamic radius and consequently its dynamics. Moreover in an entangled poly-
mer solution the ratio of the characteristic mesh size to the size of the bead plays
an important role in affecting polymer dynamics. For an infinitely small sphere the
dynamics might be expected to be governed by the viscosity of the solvent alone

[16]. On the other hand if the bead size is much larger than the entanglement length
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scale (e.g. the shearing plates of a rheometer) the bead dynamics will probe the bulk
viscosity of the polymer solution. The intermediate regime in which the bead size
approaches the mesh size is more complex, and is of interest to us. For particles in
non-adsorbing DNA we can change both polymer entanglement lengths as well as the

particle size to explore this regime.

6.2.1 Particle Tracking Techniques

We measure the dynamical properties of colloidal spheres suspended in DNA solutions
by monitoring the time evolution of their positions. As in our previous experiments
we use video microscopy to follow particle trajectories in order to determine single
particle diffusion coefficients. However since we are interested in the free diffusion
coefficient of isolated particles, we do not need, nor is it desirable, to confine the
spheres in an optical trap. We simultaneously track the locations of multiple particles
suspended far apart from each other. Using this multi-particle tracking approach,
instead of following a single particle, enables us to obtain better statistics while
minimizing the duration of our observations.

To monitor the motion of multiple particles over a long period of time, we need to
maintain a sufficient density of particles in the field of view. Since the particles are no
longer confined to the focal plane (as was the case in the line tweezer) they eventually

settle at the bottom of the sample cell due to gravity. Such sedimentation effects can



171

be avoided by matching the density of the background fluid to that of the sphere.
This is most easily done for our system by using polystyrene beads suspended in a
Tris:buffer modified with heavy water. We used a solution of Tris in a 1:1 mixture of
D,0O and water (see Chapter 4) and verified the lack of sedimentation by looking at
our sample under the microscope. These samples were found to have a fairly constant
particle density (= 20 — 100 particles in a field when viewed through a 63X objective)
over long periods of time, suggesting that the polystyrene spheres neither sink to the
bottom nor float to the top of the cell.

Additionally, precautions were taken to ensure the homogeneity of the solution.
The beads were sonicated or vortexed for 30 seconds to break up aggregates. This
was particularly important for the fluorescently tagged particles, sincé their surface
chemistry makes them more susceptible to aggregation. The DNA solution was ho-
mogenized by stirring slowly (to prevent breakage) with a pipettor tip. When the
two solutions were mixed together the concentration of spheres in DNA was adjusted
so that a typical field of view contained only 20-100 particles in focus (vol. frac.
~ 1074). The number varied depending on the size of the particle. In each field
of view the distance between particles was typically greater than ~ 10 particle radii
which prevented hydrodynamic interactions between tﬁe spheres.

These samples were viewed with an inverted microscope (Leica, DMIRB) using a

water immersion lens (63X, 1.2 NA). The use of water instead of oil as an immersion
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fluid enables us to focus deeper into an aqueous sample. Our multi-particle tracking
measurements were carried out at the center of the microchamber, ~ 60um from
the coverslip wall to minimize hydrodynamic coupling between the beads and the
chamber walls.

We use fluorescently tagged anionic polystyrene spheres (Molecular Probes Inc.)
as tracer spheres in our experiment. Using fluorescence microscopy instead of bright
field aided in image processing since particle images did not have dark rings which
tends to lead to mis-identification of particles. The field aperture is adjusted to give
us a large depth of field. A CCD camera, similar to the one used in the previous set
of experiments (see Chapter 4) was used to record the images at video rates. We also
confirmed our observations, by using the faster imaging capabilities of the confocal
head on the Leica (Noran Oz). Images recorded at 120Hz yielded results similar to
those recorded at video rates. We typically digitize the entire video frame, (a sample
image is shown in Fig. 6.1) since we need to track all the particles in the field of view.
Sufficient statistics can be obtained by digitizing and analyzing ~ 4000 frames which
requires a gigabyte of storage space.

Image processing techniques used to locate the centers of each bead are similar
to those used in the equilibrium interaction measurements (Chapter 4). Locating the
centers of the spheres when particles are weli separated is easier than in the case of

the two sphere measurements, since particles rarely come within a radii of each other
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Figure 6.1: A fluorescence image of one micron PS particles in DNA solution. The
bright spots represent the particles.

and we no longer need to correct for overlap of images. Once again we used IDL as
our image analysis platform to remove long wavelength features and calculate particle
locations using the algorithm described in Chapter 4, Section 4.5. The processing is
automated after the parameters used to locate particles is visually optimized. An
image with the centroid locations is shown in Fig. 6.2.

In the process of calculating the positions of the spheres, we also calculate mo-
ments of the brightness distribution of each particle. These distributions help us
distinguish particles of interest from noise, aggregates, and other unwanted features
since monodisperse spheres tend to form clusters with a well defined signature. An
example of this clustering effect is shown in Fig. 6.3 where the first moment of the

brightness distribution, i.e. the intensity, and the second moment, the radius of gy-
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Figure 6.2: We use the feature location algorithm to locate the centers of the particles
(see Appendix C). The locations found by using appropriate parameters are overlaid
on the original image and are shown as black dots on the above micrograph.

ration, is plotted against each other. We see that distribution has a wide range of
intensities with the brightest features being identified with the particles lying in the
focal plane. Since particles can wander in and out of focus in either of the two verti-
cal directions, each of which has its own distinct spherical aberration characteristics,
the distribution splits into two arms. Feature identifications associated with noise
usually appear at low intensities and are randomly distributed whereas aggregates,
can usually be distinguished by their larger radii of gyration. Thus we see that the
clustering of monodisperse spherical particles makes them easily distinguishable from
background noise and allows us to eliminate spurious particles.

Once we have successfully located the particles of interest we need to follow the

time evolution of their positions to determine their dynamics. To follow the trajec-
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Figure 6.3: The mean intensity of the brightness distribution is plotted against the
radius of gyration of the same distribution. The vertical axis is in pixels and the
horizontal axis is in arbitrary units. The two arms of the distribution arise due to
anisotropy in the spherical aberration in the two vertical directions.

tory of the particles in time the features in each frame need to be identified with
corresponding particle locations in the next frame. This is done using a real-time
tracking program which requires user input on several physical parameters to limit
computational complexity. For instance, a user specified distance restricts the range
in which possible features are identified. This length scale corresponds to the physi-
cal distance a particle is expected to diffuse between video frames. To avoid multiple
labeling this distance must be smaller than the mean particle spacing. The tracking
program also allows for particles to leave the field of view and reappear. Once again
the user determines the length scale for which the particle identity is retained. If a

particle appears within the specified distance and time step then the trajectory is
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Figure 6.4: The trajectories of particles are followed by a real time tracking program.
The above graph shows the tracks that were identified for a 1 micron sphere in buffer
over 960 frames for a total of 30 seconds.

continued. On the other hand if particles appear at locations that did not originally
contain a feature, they are added to the data set. Additional cuts for noise reduction
caﬁ be specified by eliminating trajectories that exist for only a few frames, since noise
features are most likely to appear and disappear between frames. Particle trajectories
for a 1.1um sphere in water are shown in Fig. 6.4.

Once we have successfully tracked the particles, we look at the probability dis-
tributions for the displacements in different time steps, and use the variance of this
distribution to calculate the mean square displacements. Since our images are two di-
mensional we can only calculate the mean-square displacements for the z and the

y directions. However we can still extract a diffusion coefficient for the particle

since the diffusion in each direction is independent of the other two directions, i.e
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Figure 6.5: The probability distribution for the measured displacements after one
time step. We see that the mean lies very close to zero, which implies that there are
no long time drifts. The overlaid fit (shown by dashed lines) is a Gaussian whose
variance is related to the diffusion coefficient through o = 2D.

< 2 >=< y? >=< 22 >= 2Dt. We fit the measured distributions to a Gaus-
sian which helps eliminate spurious contributions that have survived our previous
cuts. For example features that are highly diffusive increase contributions to the tails
of the distribution, and features that are not moving at all contribute to the peak
height. This process does not eliminate any physics as most distributions are very
close to Gaussian. Fig. 6.5 shows a typical histogram with an overlaid Gaussian fit,
and the subsequent figure, Fig. 6.6, shows the time dependence of the mean square

displacements. A straight line fit to the latter curve yields diffusion coefficients.
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Figure 6.6: Mean square displacement curves shown for a 1 micron bead in a buffer
solution. The slope of the straight line fit measures the diffusion coefficient.

6.3 Results

We are interested in exploring the changes in the diffusion coefficient as we vary
the ratio of the size of the probe particle, to the characteristic entanglement length.
For our purposes we can achieve this effect in two different ways. By changing the
background DNA concentration we can effectively change the correlation length which
in turn determines the mean spacing between entanglements. We can determine the
exact size of the entanglement length from our equilibrium measurements in DNA
solutions where we found that the correlation length scales with concentration as
c~'/2. Alternatively, we can keep the DNA concentration fixed and vary the size of

the probe sphere. We explore both these approaches using multi-particle tracking
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techniques.

6.3.1 Fixed Colloid Size

With a fixed colloid size, a = 1.1um, we vary the DNA concentration from 0 to
300ug/ml. The measured mean square displacements are shown in Fig. 6.8. As
expected we see a decrease in the slope of the curves as the DNA concentration is
increased. Since the solution gets visibly more viscous it is not surprising that the
particles move slower. On examining the mean square displacements carefully, we
also observe that < Az? > does not scale linearly with time as the concentration is
increased. This sub-diffusive behavior is shown more clearly in Fig. 6.9 which shows
the mean square displacements for a two micron bead in concentrated DNA, where
the effect is more pronounced. We find for concentrations lower than 100ug/ml, the
measured particle motion is diffusive in the entire time domain explored (16.7msecs
-2 mins). However, as the concentration is increased beyond 100ug/ml the exponents
at short time scales (< 1 sec), fali below unity.

To understand the origin of these effects we look briefly at the dynamics of poly-
mers in solution. The myriad conformations available to a polymer gives rise to
several different time scales that determine its motion. One such time scale is defined
as the reptation time. This concept was developed by DeGennes [16] and exploits the

idea that polymer motion is restricted by tube like constraints formed by surrounding
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Figure 6.7: A polymer chain entrapped in a tube formed by the surrounding entangled
polymer solution. The length of the tube is given by L, and the time taken to diffuse
the length of the tube is called the reptation time.
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Figure 6.8: The measured mean square displacements for a 1um sphere at different
DNA concentrations (10ug/ml,50ug/ml,100ug/ml and 300ug/ml).
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Figure 6.9: The measured mean square displacement for a 2um bead in concentrated
DNA solution (300ug/ml).

polymers (see Fig. 6.7). The time taken by a polymer to diffuse through this ‘tube’ is
termed a reptation time, 7%, and scales with the length of the tube, L, ~ N2 /€ and
the transverse diffusion time, D, ~ kgT&/(Nsoivent VI2), as 7 ~ L2/D,. Since both
L,( which scales as ~ ¢!/?) and D, (which scales as ~ c) change with the number
of entanglements, the reptation time for semi-flexible polymers scales as 7 ~ ¢3/2.
Polymer motion is found to be diffusive at time scales that are longer than 7" but
at shorter times, re-arrangement dynamics of links and link connectivity give rise to
sub-diffusive behavior. Since the reptation time increases with concentration, in the
highly concentrated DNA solutions, 7* lies within our measured time window. This
is suggested by the motion of the beads; we see a sub-diffusive regime at short times
which gives way to the diffusive regions at longer times (see Fig. 6.9). The time scales

(30msecs - 1s) compare well with other measurements of the tube renewal times for
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A-DNA (86, 100], further supporting this argument.

To extract diffusion coefficients, we focus our attention on the long time regimes,
where < Az(t)? >~ t. The results of straight line fits to these regions is shown
in Fig. 6.10. We normalize the measured values by our mean square displcement
measurements of the particles in pure solvent in order to eliminate systematic errors
that might arise due to variations in particle size, temperature etc.. If we assume a
Stokesian relationship between the measured diffusion coefficient and the viscosity. i.e.
D = kgT/(67na), our measurements show an increase in viscosity with an increase
in concentration.

The concentration dependence of viscosities in polymer solutions are hard to model
theoretically. An empirical model that has been used to describe the bulk viscosity of
the polymer solution is the Huggins equation [101]. Here the viscosity increase with

concentration is given by
n/m0 =1+ [n]c + ka[n]*c® + ... (6.9)

where 7g is the viscosity of the solvent, [n] is the intrinsic viscosity of the DNA
solution and kg is the Huggins parameter. Equation 6.9 is similar to the hard sphere
viscosity, where n/m = 1 + 2.5¢ [16], where ¢ is the polymer volume fraction. The
differences arise due to the deformability of the polymer coil which is accounted for
by the intrinsic viscosity, [7] < Rj. The Huggins parameter in Eq. 6.9 accounts for

polymer-polymer interactions. For A-DNA, viscometric techniques have measured
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Figure 6.10: The increase in normalized viscosities with concentration is shown as
filled plot symbols. The solid line shows the values that would result if the Huggins
model with the previously measured parameters is used.

[n] = 1.32x 10~2ml/pug [20] and kjy is theoretically calculated to be around 0.75 [101].
The data is not well described by Eq. 6.9 using the parameters above. The measured
viscosity increase is much slower than what would have been expected (see Fig. 6.10).

To understand these discrepancies let us examine the Stokes-Einstein relationship
in detail. The diffusion coefficient of a freely diffusing particle, is given by D =
kpT [67na, where a is the effective radius of the particle. For example, a can either
be the hard sphere radius of the particle or the hydrodynamic radius as is the case
for a polymer coil. In a simple solvent the ratio of the diffusion constant of a hard
sphere, D, to its diffusion constant in water, Dy (at the same temperature), is equal
to the inverse of the viscosities, i.e. D/Dy = ng/n. However in a complex fluid

the hard sphere radius of the particle might be altered due to interactions with the
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background fluid. For example, adsorption of polymers from the background fluid
could lead to a higher effective radius which could change as the background polymer
concentration is altered. In such scenarios a generalized equation for the ratio of the

diffusion coefficients can be written as

D ans
=2 _ 6.10
Dy np(c)Req(a, &, An) (6.10)

where np(c) is the concentration dependent polymer viscosity and Reg(a,&, A7) rep-
resents the effective hydrodynamic size of the bead. The functional form of Reg is
not only controlled by the hard sphere size but may also depend on the correlation
length (which is concentration dependent) of the polymer solution and the surround-
ing viscosity. In a simple viscous fluid, R.g should reduce to the hard sphere radius,
a. However if interactions between the polymer and the bead were present this as-
sumption would breakdown; then our experiment would probe the complex ratio
ns/n(c)pReg(a,€,An). The discrepancies between Stokes-Einstein predictions and
our measured values suggest that the local environment around the bead is modified.
The lower viscosity values could arise due to reduced polymer concentrations around

the bead. We explore these issues further in the next section.

6.3.2 Fixed DNA Concentration

We repeat the above experiments, but this time we keep the concentration of the back-

ground fixed, and look at the diffusion constant as we change the size of the probe
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DNA Concentration 0.3um 0.6pym 1.1um 2.0um
No DNA 1.66+0.05 | 0.8+0.05 | 0.47+0.05 | 0.25 + 0.02
30ug/ml 1.5+0.2 0.6+0.1 |0.38+0.05| 0.20 +0.05
100ug/ml 1.47+0.03 | 049+0.02 | 0.28+0.1 | 0.15+0.1
300ug/ml 0.92+0.02|035+0.05 0.15+0.1 | 0.08+0.02

Table 6.1: Measured diffusion coefficients of different sized beads at different back-
ground concentrations.

beads. We use four different sized colloidal spheres (0.3um, 0.6um, 1.1xm and 2.0pm)
to measure diffusion coefficients in different DNA concentrations of 30ug/ml,100ug/ml
and 300ug/ml. Once again we observe a decrease in the ratio, Dy/D with increasing
bead size (see Table 6.1). This is inconsistent with the fact that the background
concentration is fixed, and our colloidal spheres are measuring a bulk viscosity. Our
data indicate that the smallest spheres measure viscosities that are close to the sol-
vent viscosity. As the sphere size increases, the effective viscosity starts to deviate
strongly from the buffer measurements.

These results clearly show that the probe sphere is not measuring the bulk viscos-
ity, and its size is playing a significant role in the value obtained. To understand the
effects of the probe size, we plot the normalized diffusion coefficients, Dy/D, against
the critical ratio a/£. In order to do so we need to know both the correlation length

as well as the size of the bead. The correlation lengths used are obtained from the fits
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Figure 6.11: The change in the relative viscosity plotted against the critical ratio a/&
as the bead size is changed. The solid spheres represent measurements made at a
fixed DNA concentration of 300ug/ml, the open circles present measurements made
at 100ug/ml and the grey circles are data taken at 30ug/ml. The predictions of the
theory (see text) are shown as solid lines.
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to the interaction energies presented in the previous chapter. The second parameter
that we need to know accurately is the size of the bead. From static light scattering
experiments (this was carried out in the D,0 Tris Buffer on the goniometer in the
Weitz lab) we measure particle sizes of all the beads used. As we see in Fig. 6.11
at ratios for which the bead size is comparable to the correlation length, the diffu-
sion coefficient of the probe bead is close to solvent values. As the critical ratio a/€
increases the measured diffusion coefficient plateaus at different values for the three
different DNA concentrations. To understand this behavior we explore the factors
that could control the diffusion of beads in complex fluids.

A theoretical model for the scaling of the friction coefficient for beads in a polymer

solution has been suggested by DeGennes and his co-workers [16, 97] to be

D/Do ~ (1 - %)e-“/‘f) + ";% (6.11)

where 7 is solvent viscosity and a/€ is the critical ratio. The concentration depen-
dence of the correlation length determines the nature of the stretched exponential.
When the size of the probe bead exceeds the size of the mesh size the measured
viscosity approaches the bulk value, 7. On the other hand when a <« &, then
the measured viscosity approaches the solvent viscosity. Equation. 6.11 qualitatively
reproduces our results (see Fig. 6.11), however the decrease of the function at low,
a/€ ratios is not reproduced. The measured ratios appear to decay faster, indicating

that the properties of the surrounding medium are closer to that of the solvent.



188

We re-examine our data by considering Eq.6.10 carefully. By keeping the back-
ground DNA concentration fixed in our experiments we directly probe the effective
hydrodynamic radius, Reg(a,£, An) since np(c) is a constant for all sphere sizes. We
see that the effective hydrodynamic radius steadily increases from its solvent value to
a maximum, R}¥4*(a,§, An). This maximum value increases with polymer concen-
tration, suggesting that the plateau level is related to the bulk viscosity. In addition
Req levels off at different values of a/£ for different polymer concentrations indicating
that the contrast between the bulk polymer viscosity and the solvent viscosity plays
an important role.

To understand this behavior we look more closely at the interactions between
the beads and the polymer solution. From the two-bead interaction measurements
we know that each bead is surrounded by a depletion cavity whose size is given by
~ m&/2. This region is depleted of polymer coils, making the immediate environment
around a bead more ‘solvent like’, which would support the lower viscosities measured.
In addition the size of this region is controlled by the background DNA concentration.
Thus at a fixed DNA concentration the depletion cavity around each bead has the
same size. Evidence for this effect was found by looking at interaction potentials with
different sized spheres (see Section.5.5 in Chapter 5). To understand the motion of
the beads in the depletion cavity we need to examine the hydrodynamic interactions

between the sphere and the surrounding polymer medium which does depend on the
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size of the bead.

The velocity field created by a moving sphere in a Newtonian fluid decays as a/r
[102]. When the particles are enclosed in cavities, the flow field is disrupted due to
the presence of the exterior medium which can create complicated back flows. In
our experiment the flow generated by the motion of the particle propagates through
the depletion cavity till it interacts with the background polymer solution. Since the
magnitude of the flow field is determined by the size of the bead, larger beads have
velocity fields that are longer range than those of the smaller spheres. Interactions
between this velocity field and the neighboring polymer solution could lead to mod-
ifications in the motion of the particle. This effect would be more pronounced for
the larger beads since the disturbances are more likely to penetrate the polymer solu-
tion (see Fig. 6.12). In addition the boundary conditions presented by the depletion
cavity are non-trivial. Higher bulk polymer concentrations are more likely to present
larger perturbations to the flow field. This would then make the motion of the bead
strongly dependent on the viscosity mismatch between the depleted region and the
bulk. These issues suggest that the role of the depletion cavity plays a significant
role in determining the hydrodynamic coupling between the bead and the polymer
solution.

Particle-tracking experiments allow us to explore different regimes of diffusion in

colloid-polymer solutions. We directly measure the diffusion coefficient of a bead and
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Figure 6.12: A cartoon showing the velocity fields created by a moving sphere which
depend on the size of the sphere. The light gray region surrounding each sphere
represents the depletion region that surrounds each bead. The velocity fields are
shown as dark lines, the width of which represents the strength.
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see how it changes with polymer concentration. The measured viscosities are found to
deviate strongly from the expected bulk polymer viscosities. Further investigations
in which we keep the background viscosity fixed, allow us to directly measure the
functional form of the effective radius that controls the bead motion. We find that the
function deviates strongly from the measured hydrodynamic radius and is dependent
on the ratio of the bead size to the correlation length. From these measurements
it is possible to identify regions which are insensitive to bead size and could offer
information about the surrounding medium. We suggest a qualitative model that
could account for the observed behavior based on hydrodynamic interactions between
the beads and the polymer solution outside the depletion cavity. Further theoretical

investigations are needed to confirm these predictions.

6.4 Coupled Diffusion in Polymer Solutions

So far our discussions have been limited to a single sphere suspended in a fluid.
However the dynamics of the system changes in crowded colloidal systems due to
interparticle hydrodynamic effects. Technologically important processes like sedi-
mentation and aggregation are largely determined by the hydrodynamic interactions
between the colloidal spheres. These interactions are mediated by disturbances in the
fluid due to motion of the particles. For example a point sphere moving through a

fluid generates a velocity field which in turn causes motion of the surrounding spheres.
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In this section we explore the simple case of hydrodynamic interactions between two
spheres in polymer solutions.

In order to understand the hydrodynamic interactions it is necessary to understand
the flow field generated by a moving sphere [35, 102]. The starting point for most
hydrodynamic calculations is the Navier-Stokes equation. The viscous drag force, F,
felt by an isolated sphere moving at constant velocity Vg, in an incompressible fluid

is found from the relation
Vo=-M-F (6.12)

where M is the mobility coefficient. For a single isolated rigid sphere of size a,
M = 1/(67na) where 7 represents the viscosity of the solution and I is the identity
matrix. The velocity field generated by this moving sphere can be calculated in a two
step process. A simple calculation for a point particle moving at constant velocity,

Vo, vields a flow field, u(r) that is given as
u(r) = T(r) - F = 6mnT(r) - Vo. (6.13)

Here T(r) is the Oseen tensor that describes the velocity field at a displacement
r from the source of the disturbance. For a point source in a simple solvent the
velocity field only depends on one vector, r and the Oseen tensor has the form,

T(r) = (1/(8mnr))(I + t£). The calculation can be extended to a finite sphere of size
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a, by Taylor expanding the velocity field around the center of the sphere [35] to vield

1

6a"’V2)'1‘(r) (6.14)

u(r) = 6anaV,.(1 +

Substituting the form of the Oseen temsor and taking the appropriate derivatives

yields a velocity field that is given by
3a a? - 3a a? . -
u(r) = E(l + 3?)VOI+ 1—;(1 - r—z)l‘ - Vof. (6.15)

We see that at close range, r ~ a the fluid moves at the same velocity Vg as the
particle, and far away , i.e. 7 >> a it goes to zero. However the effect is still long
range as the leading order term falls off as 1/7.

In crowded colloidal suspensions the long range flow field created by one moving
sphere affects the motion of the other spheres. For the simple case in which there are
only two spheres, the velocity field generated by the first sphere causes the second
sphere to move. The particle velocity of an identical second sphere, Va(r) can be
calculated by Faxen’s law to be

a2

Va(r) = u(r) + 5

V2u(r) (6.16)

where u(r) is the velocity field generated by the first sphere and is given by Eq. 6.15.
This motion in turn affects the motion of the first sphere and higher order effects can
be calculated iteratively.

The presence of the second particle breaks the spherical symmetry of the system

and the mobility matrix in Stoke’s Law (Eq. 6.2) is no longer diagonal. For the two
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Diagonal Elements M, = My = 1/(6mma)l

Off-Diagonal Elements | My, = My, = 1/(6mna) (32l + 2£8) + 9(%)

Table 6.2: Mobility Matrix for Two Spheres in a Solvent

sphere system the viscous drag on each particle, i is now given by a matrix equation
Vi= -3 M,F; (6.17)
J

where the four mobility coefficients, M;; quantify the hydrodynamic interactions.
Solutions for the two sphere system in a solvent background have been explicitly cal-
culated by Batchelor [103] and the 1/r dependence of the relative diffusion coefficient
has also been experimentally observed [104]. Both theoretical predictions as well as
experimental observations reveal that the relative mobilities of the two particles are
suppressed and the center of mass motion is enhanced. The origins of these effects lie
in the fact that it is harder to squeeze out the liquid between the two spheres than it
is for the fluid entrained by one sphere to pull along the second sphere. A summary
of the results for the different mobility coefficients in a pure solvent can be found in
Table. 6.2.

Having revisited the tools needed to understand hydrodynamic interactions be-
tween two spheres in a solvent we turn to the problem in which the background is
replaced by a polymer solution. Unlike a pure solvent where the hydrodynamic inter-

action is long range (~ 1/r) in a polymer solution this effect is predicted to be screened
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by the polymers. A qualitative understanding for this can be obtained by comparing
the viscosities of a solvent with that of a semi-dilute polymer solution which gener-
ally tends to be higher. Since the velocity field generated by a point displacement is
proportional to 1/nr, a larger viscosity causes the field to die off faster. The typical
length scale associated with the decay is called the hydrodynamic screening length.
€n and is proportional to the static correlation length [105] discussed in Chapter 2.
Quantitatively these differences have been explored in a mean field treatment of the
Navier-Stokes equation in which the background polymer solution is modeled as an
effective medium [106, 107, 108]. The contributions to the flow field due to the finite
size of the polymer coils and the changes that occur due to instantaneous rearrange-
ments of these coils are ignored. Instead, the background polymer is treated as an
effective medium and their average effect is included in the calculation. We explore

the hydrodynamic interactions between two spheres in a polymer solution.

6.5 Two-Sphere Measurements

Our multi-particle tracking experiments demonstrated that the region surrounding
the probe sphere strongly dominates the dynamics. In this section we use a second
bead and look at the hydrodynamic interactions between the two beads to get a better
understanding of this region. In order to measure the hydrodynamic interaction. Once

again we utilize the optical line tweezer to spatially confine the particles, so that we
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may study their displacements at close range.

6.5.1 Diffusion in an Optical Trap

Measuring diffusion constants in an optical potential raises a range of issues. In
order to dispense with some of these problems, we closely examine the diffusion of a
single sphere in the trap and compare it with multi-particle tracking results. Since
the particle is bound in an optical potential the motion of the bead is no longer
freely diffusing. We can calculate the probability distribution by using the Langevin

approach. With the addition of a parabolic potential Eq. 6.1 gets modified to

d’z

dz
md—tz- = CE + f(t) —kz (618)

where £ is the spring constant associated with the optical potential. If we ignore

inertial effects, i.e. % — 0, the probability distribution for particle displacements,

P(z,t), that results from the equation of motion is given by [19]

- k(z — zge ‘/")2]
Pl ks T (1 — e 2/)

[21rkBT e_gg/f)]-uz (6.19)

where, 7 = (/k and z, is the mean position of the particle. In the small time limit, i.e.
t < 7, Eq. 6.19 reduces to a Gaussian distribution indicating that the particle does
not ‘feel’ the parabolic optical potential. We have used a single sphere to map out the
shape of the typical optical potential. From these measured potentials (see Fig.5.3,

we find that k ~ 0.5kpT/um?, the friction coefficient { = 6wnoa = (0.454m?/s)/ksT,
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and thus 7 = 200ms. For all the diffusion constants reported in this section, the
measured times ranged from 16.7ms to 70ms.

Additionally we found the trapping to be optimal at a short distance from the
coverslip wall. This will lead to hydrodynamic coupling between the bead and the
chamber wall that will affect the measured diffusion constant. The correction to the
single particle long time diffusion coefficient due to the presence of the wall is given

by [104]

9a 9a

D = Dof1 - 16z, 16z,

(6.20)

where ), and z, are the distances from both the enclosing walls. For our measure-
ments the distances are z; ~ 100um and z; = 3um. We measure the diffusion
coefficient of a single sphere by trapping it in our line trap and following its motion.
These measurements are made at two different depths, 3um and 7um and the dif-
fusion coefficients are measured to be 0.35um?/s and 0.37um?2/s respectively. Using
the appropriate correction factor for both the wall distances we find that the values
for Dy that we extract are 0.389 +0.01pzm/s? and 0.394 +0.01um/s2. These compare
well, within error bars, and are close to the theoretically calculated values indicating
that we can extract unperturbed diffusion coefficients from the optical trap.

When considering the effect of the wall on the motion of two spheres, we need
to consider the relative motion and the center of mass motion separately. When the

two spheres are moving in the same direction, i.e. the motion of the center of mass,
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they create flow fields that are similar to that of a single sphere and thus we would
expect their diffusivities to be affected similarly. When the two spheres are moving
against each other, i.e. relative motion, then their flow fields partially cancel each
other out thus reducing the coupling to the wall [104]. In addition, we also need to
consider the effects of the wall in the presence of polymers. The coupling with the
wall is expected to be long range, 1/r, in the pure buffer solution. With the addition
of polymer to the solution the flow fields are exponentially screened and one would
expect the coupling to the wall to be reduced. Thus with increasing polymer solution

the effects of the wall on the particle motion should be negligible.

6.5.2 Experimental Results

Having considered the limitations of the optical trap on one particle motion we now
look at the the diffusive motion of two particles at close range. The introduction of
a second bead introduces additional forces into the problem. In the limit in which
optical forces can be ignored, the complete Langevin equation (again ignoring inertial

effects) in center of mass coordinates can be written as

dT _ aUde,,‘,m,,
C% = f(t) - 5 (6.21)

where a—(jﬁé@ is the depletion force. The effects of the depletion well can be high-
lighted by looking at Fig. 6.14. This figure displays a naive plot in which the diffusion

coefficients have been extracted using similar means as was employed for single bead
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Figure 6.13: The mean square displacements for the relative coordinate at different
DNA concentrations.

measurements. Two particles are trapped in the line tweezer and their motion is
followed for 30 minutes. Once again the centroid locations are calculated. The data
is partitioned according to the initial separation of the two particles, and the time
evolution of the mean square displacement within each segment was used to calcu-
late diffusion coefficients (see Fig. 6.13). This technique is marred by two problems.
First, the data at small separations is not diffusive since the particle motion is par-
tially constrained by the depletion well. In addition the short-time behavior of the
most concentrated solutions appear sub-diffusive due to polymer entanglement effects
much like the effects observed in multi-particle tracking. Inspite of these limitations
the data provides qualitative information on the effects of the depletion cavity. At

small separations the relative particle motion barely changes and this is reflected
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Figure 6.14: The relative diffusion coefficients at different bead separations for differ-
ent concentrations of DNA.

in the low value of the effective diffusion coefficient. At separations beyond which
depletion effects are no longer felt, the measured values demonstrate the differences
that arise due to the presence of polymers. If we examine the extracted diffusion
coefficients (see Fig. 6.14), at long range, i.e. at separations greater than 1.8um. we
see that the buffer diffusion coefficient values continue to increase whereas the values
in the polymeric solutions level out, suggesting that the motion of the particles is
greatly altered in DNA solutions.

We now return to Eq. 6.21 and re-analyze our data to remove these artifacts and
extract mobility coefficients. In order to calculate the mobility of the particles we need
to know the force exerted by the depletion interaction as well as the relative velocity

of the particles. Both pieces of information are readily available from our data.
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Figure 6.15: The friction coefficient ((r) = (—OUgeptetion/0r)/ < v(r) > measured at
different DNA concentrations.

The depletion forces are obtained from the measurement of the interaction energies
presented in the last chapter. The average relative velocities can be calculated from
the time dependent positions of the particles. Using these results as well as the fact
that fluctuating thermal forces average to zero, the mobility coefficient (= 1/friction

coefficient) in Eq.6.29 can be written as

M(r) = 1/¢(r) = v(r)/(—OU4eptetion/ 87) (6.22)

The measured results are shown in Fig. 6.15. Once again the data was segmented ac-
cording to initial particle separations and the average velocities were computed within
each segment. Fits to the raw potentials measured by the means described in Chap-

ter 5 are used to calculate the force, U(r)/dr. We see that the friction coefficients
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are increased at close separations and decrease as the relative separation between the
spheres increase. This effect is enhanced at higher polymer concentrations. This is
similar to the observations in pure solvents, however the mobility coefficients appear
to have a characteristic decay length in the polymer solutions.

We attempt to fit the data with a screened mobility coefficient. In an pure solvent
we expect that the mobility coefficient would fall off as 1/r, however in a polymer
solution we might expect the range to be decreased due to screening effects. we might
expect the mobility coefficient to have a slightly modified form (from the solvent

result) and be given by

a—r

M(r)=1/¢(r)=1- ge . (6.23)

where a is the diameter of the bead, £g is the characteristic decay length, and C
is a multiplicative constant. A fit to the above equation with two free parameters.
the hydrodynamic correlation length, £ and the multiplicative constant, is shown as
solid black lines in Fig. 6.15. The fit parameters obtained for £ compare well with
the correlation length of the background DNA solution. We find that £ = (1.5 +
0.4)x. These measurements demonstrate that the screening concepts proposed for
hydrodynamic interactions in polymeric solutions plays an important role in mobility

coefficients for two beads.
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6.6 Conclusions

We have successfully probed the dynamical properties of colloidal spheres in DNA
solutions. Our experiments with a single sphere in a background of DNA, reveal
the subtleties of particle diffusion in complex fluids. We find that the particle size
plays an important role in determining the viscosities measured. We directly measure
the functional form of the effective hydrodynamic radius, that describes the motion
of different sized beads. Our results suggest that smaller beads are less affected
by the surrounding polymer network than larger beads. This qualitatively agrees
with theoretical predictions, but further theoretical work is needed to account for the
subtleties of the diffusive behavior. We also look at close range bead dynamics to
study the effects of hydrodynamic screening. The measured mobilities are found to
follow the predicted exponential decays expected within a mean field theory.

The complexities of colloidal dynamics in polymer solutions are distinctly high-
lighted in our measurements. We have used a system in which we carefully character-
ized the physical properties, to study the dynamics. We find that with the detailed
knowledge of the entanglement lengths and interactions we are able to extract the
dynamical behavior and suggest qualitative models to describe the behavior. There
is no doubt that further investigations are needed to completely understand the com-
plex dynamics. Most importantly these experiments open up possibilities for future

investigations, both theoretically as well as experimentally.



Chapter 7

Conclusions and Future Work

In this thesis we have shown how colloidal spheres can be used as gentle probes of
complex fluids. In particular we have explored the energetics, structure and the dy-
namics of a model polymer, DNA, using the Brownian motion of the colloidal spheres.
The observed microscopic interactions ultimately affect the structural and dynamical
properties of bulk polymer solutions. The techniques developed in this thesis can be
extended to explore both microscopic phenomena of fundamental interest, as well as
study interactions arising in real world systems.

Specifically, by confining two spheres on a line optical tweezer and following their
motion with digital video microscopy we directly probed the interaction between two
colloidal beads in a polymeric DNA solution. We have presented the first simulta-
neous measurements of the range and the depth of the polymer depletion potential.
Moreover we were able to measure the functional form of this interaction in both

the dilute regime (that has been theoretically modeled already) and the semi-dilute
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polymer solution which is less well understood. Our measurements show that ap-
propriately scaled hard sphere depletion models can still be applied to the entangled
semi-dilute polymer solutions. Thus the notion of describing the entangled polymer
regime as a close packed system of ‘blobs’ clearly manifests itself in the depletion
world!

In addition to testing depletion predictions, our experiments also provide a clean
test of the calculated state diagram for polymer solutions. Calculations show that
the introduction of a persistence length into the description of the polymer leads to
new phases in the polymer state diagram. These effects are manifest more strongly
in cases such as DNA, where the persistence length is large compared to the polymer
chain diameter. Our observations provide the first measurements of the transition
from the dilute regime to the weakly fluctuating semi-dilute regime where the physics
is dominated by pair-wise contacts between links. Thus this technique provides an
effective way of probing the fluctuation spectrum that exists in different polymer
solutions.

Besides exploring fundamental issues, these experiments also measure polymer
properties that are of relevance to the practical user. Qur measurements were carried
out in a regime where the size of the polymer and the colloid were comparable. Issues
arising when the ratio of the sizes of the two suspension components (i.e the particle

and the polymer) is close to unity are of technological interest; in this regime aggre-
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gation in suspensions is minimized. We are also able to quantitatively characterize
the second virial coefficient which determines polymer solution properties, such as
solvent quality and size. Our apparatus measures polymer osmotic pressures with
sub-Pascal resolution, which exceeds the sensitivity of traditional osmometers.

The dynamical issues explored in this thesis highlight the effects of microscopic
interactions on rheological properties. Thus simple analyses using Stokes-Einstein
predictions do not predict the rheological properties of the background material. Our
measurements highlight the importance of hydrodynamic coupling of the beads to the
background material. These issues need to be explored in detail to develop models
that would adequately account for such hydrodynamic interactions. We also examined
the hydrodynamic coupling between two particles in the presence of a polymer back-
ground. The effects of hydrodynamic screening can be clearly seen in the measured
mobility coefficients.

These experiments represent a foray into the polymer-colloid world and opens up
a variety of opportunities for future investigation. The use of bio-materials to explore
fundamental concepts in polymer physics, offers a vast resource for the physicist.
The tools and materials developed in biochemistry and microbioiogy can be used to
manipulate polymers which can be used to study fundamental physics and at the
same time develop a better understanding of cellular environments. For example, the

numerous restriction enzymes, polymerases, etc. that can be found for different DNA
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sequences allow for easy manipulation of the polymer.

Our experiments using salt demonstrate that simple changes in chemical environ-
ments lead to large changes in polymer structure. This allows us to explore depletion
in systems where the polymer is more rod-like in addition to being able to access
the intermediate regimes. For example reducing the length of the DNA in low salt
solutions could allow us to reach the rod like limit and understand the subtleties of
this regime. Moreover DNA in living organisms usually exists as plasmids, which are
then digested to produce linear double strands. With the help of enzymes it should
be possible to ligate the ends of the DNA to reproduce a plasmid. This is an in-
teresting area in polymer physics since topological constraints give rise to new and
interesting energetic effects in entropic systems. This area has been poorly explored
since synthetic ring polymers are hard to manufacture. Depletion studies in such
systems could elucidate polymer properties, and we are ideally poised to do so with
these techniques.

The breadth of possibilities for exploration of fundamental physics with DNA
does not stop there. Biochemists have successfully attached biotin to one end of
DNA. Biotin forms one component of a lock and key molecule, the other part of
which (Streptavadin) can be easily coated onto colloidal particles. With this mecha-
nism it is possible to covalently bind DNA to a colloidal particle to form a polymer

brush layer with a long length scale. Studying interactions between polymer brushes
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on curved surfaces would allow us to mimic and understand conditions that help
stabilize colloidal particles. In addition polymers on curved surfaces have interesting
conformational properties. For instance close to the bead surface monomer density
is high but decreases further out. Thus correlation lengths at close range would be
different than those further from the surface. Using the line tweezer set-up it should
be possible to probe these different polymer configurations and measure oscillations
in the interactions that arise due to varying 'blob’ size.

Apart from probing fundamental problems our technique can also be extended to
understand real world problems. Polydisperse polymer solutions, branched polymer
solutions etc., can all be investigated with this technique. For example herring sperm
DNA is an interesting polydisperse system that can be investigate to study issues in
depletion due to polydisperse polymers. On the other hand we can use the optical
trap as a point tweezer to study kinetics of biologically important molecules. Bind-
ing chemistry can be used to attach complementary proteins (such as the selectins
that are important in white blood cell adsorption) on two different surfaces, i.e. the
coverslip wall and the colloidal bead. The optical trap can be used to position the
probe sphere at different distances and monitoring the motion of the bead in different
chemical environments should allow us to calculate kinetic rates for reactions. More-
over to determine the the effects of polymer entanglements on these rates, the smaller

molecules of interest can be attached to DNA and/or suspended in glycerol to reduce
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the time scales to lie within our measurement capabilities.
We see that the present experiments have only introduced what can be measured
with this technique. There are exciting possibilities, especially when the systems

under investigation that can be used to bridge the biochemical and physics world.



Appendix A

The Second Virial Coefficient

The virial expansion is often used to describe simple physical systems. This series
usually corrects for the effects of interactions in a system that is otherwise described
as non-interacting. The starting point for these calculations can be found in several
texts [29]. We revisit the calculation of the second virial coefficient which is used for
the polymer systems described in this thesis.

The Hamiltonian for a system of independent particles which interact with each
other through an interaction potential u;;, such as the one shown in Fig.2.3 (Chapter
2), can be written as

i=N
H = gl p/2m + ?‘_qu,-j (:,7=1,2,..N) (A.1)
where p; is the momentum of each particle. The corresponding partition function in

a given volume, V' and at temperature, T, is given as

_1_ 27‘l’kaT

— L N 3N .. —H/kgT __

2*M2Zy (A.2)
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where

Zw—/Hu+th By (A.3)

1<7

Here we have defined f;; = e *#T/*s — 1 which is usually referred to as the Mayer
function. We see that as the interaction energy vanishes the partition function Qy
reduces to the simple free particle result. To include the effects of interactions we can

expand Zy in a series

Zn = /(1 +> fii+ 3 fiifu+.)dr,...dzy. (A.4)

The different terms, fi; fu, fij fut fmn etc. represent the clusters in an N-particle system
that provides corrections to the non-interacting result. The second virial coefficient,
B, is described as the two-point interaction and is given by the term f;,. This can be
written out explicitly as

h3/2

- 3. 73 \ =
B‘mhm@ﬂmv/ﬁ”“d”‘ (A.5)

If we use the fact that the interaction depends only on the separation between parti-
cles, r = | — z, then the above equation can be rewritten as

2mh3/2 -2
B = W/f(r dr (A.6)

3/2
2mh? /(e""”‘"T 1)rdr

(21rkaT 3/2
The above result can be used for deriving polymer interactions, (as is done in Chapter

2, Section 2.2), with u(r) representing the link interaction potential.



Appendix B

Free Energy Minimization

In this appendix we discuss the minimization of the free energy of a polymer sys-
tem in the random phase approximation [17, 16]. We also discuss the minimization
considerations when two point particles are inserted in a polymer solution.

From Chapter 2 we saw that the free energy can be written as

e

F=F(c)+24c

/ d%@f + (Vée(r))? (B.1)

where F'(c) was the homogeneous free energy of the system and the last two terms
result from the expansion around this minimum state. In the above equation, ! rep-
resents the link size, and dc(r) represents the deviations in the concentration from
the mean bulk concentration, c. The simplest solution in which the free energy is
minimized is when dc(r) = 0. However, to calculate the correlation between concen-
tration fluctuations we must look at the higher order terms in the expansion of the
free energy. We must find the minimum under the additional condition in which a

link is held fixed at » = 0. To find the new minimum state we look at the last two
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terms in Eq. B.1 and look for solutions that will minimize the contribution. This is

given by

2 2
;Z—c / dsri‘sﬁgl + (Vée(r))? = 0 (B.2)

Integrating the last term by parts and using the constraint that the link is fixed at

r = 0 results in

/ dr(Véc(r))? = (be(r)) Voe(r)| o ~ / &3réc(r)(V26(c(r)) (B.3)

When evaluated at the two limits the first term on the right hand-side is zero, which

lets us rewrite the sum of the two terms under the integral in Eq. B.2 as
Ve — (1/€%)dc = 0. (B.4)

The solution to this equation is often referred to as the Ornstein-Zernicke formula.
The introduction of two point particles in the polymer solution alters the free
energy of the system. The free energy associated with each particle is given by
Eq. 2.40 and has to be added to Eq. B.1. In addition the insertion of the particles
leads to perturbations in concentration that also contribute to the free energy. This

was given in Eq. 3.6. Thus the total free energy can be written as

F =2F(c) + —22%2 / dﬁ@ﬁ + 8¢(r)(V?6(c(r)) (B.5)

+/6c(r)u(r - )dr + /6c(r)u(r —r)dr
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Once again the sum of the last four terms has to vanish in order to minimize the free

energy.
/ d%[“iém ~ (8e(r)V?5(c(r)) (B.6)
+k;§"c[2 oc(r)u(r — ry) + de(r)u(r — Tz)] =0

We can cancel dc(r) through-out the equation and rewrite it as

Ve — g = k:%[u(z — 1) + u(z — 1))} (B.7)

The above equation is similar to the Ornstein-Zernicke equation except for the fact

that the two point particles act as source terms.



Appendix C

List of IDL Routines

The digitized images were analyzed using routines written in IDL. A typical session
used to analyze a set of images which contain, two beads is presented below.
A typical batchfile for an image taken in bright-field with a 100X lens and 1.6

tube lens is given by

cd," "verma/data/filled3/buff20"
b = flatten(’flat6911’, 'dark7027’)
e_xys, 'buff*’ ,extent=15,nballs=2,back = b,/replace

e_dbase, ’buff*’,’../data\_buff20’,nballs=2

This batchfile produces a data file that contains the z and y co-ordinates of each
particle, the radius of gyration, the total integrated brightness, and the time code

associated with each position. The potential is then calculated by using the command,

pot=equr (’data_buff20’,binsize=0.02)

or
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pot=n_equr(’data_x*’,binsize=0.02)

The first command takes a data file and calculates a potential from the coordinates.
The second command takes all the files in a directory that are labelled, ‘data_...". and
produces potentials that have been binned similarly. This is essential for subtraction
techniques. The command n_equr produces multiple files (the number depends on
the nos. of files in the directory) which are labelled. For example if there are 3 files
then the value of the potential in the third file can be accessed by pot(1, *,2). Usually
the second command was run on a buffer data set and a DNA data set. The output
was read into separate two dimensional arrays, which I will call ‘buff’ and ‘dna’. To

subtract the buffer value from the dna measurements we used the routine,

result=sbt (buff,1.25,dna,0,0)

or

result=sbt2(buff,1.25,dna,0,0)

This routine takes the buffer potential, ‘buff’, a hard-sphere radius, a sample poten-
tial,'dna’, and offsets. The first routine fits a third order polynomial to the buffer
potential, whereas the second routine uses a quadratic. The fits are subtracted from
the sample potential and the routine returns the subtracted result. The result is
a two dimensional array that contains the separation between the spheres and the

magnitude of the potential.
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The output of the subtraction routine can be fed into a fitting routine that can
either fit to the AO model, the mean-field model or the correlation hole picture. These

are accessed by

fit=aofit(result,startvalue,stopvalue, range,pressure,hard sphere

radius,vert. offst)

The inputs are the array containing the potential, the range of to be fit which is
specified by startvalue and stopvalue,initial guesses for the range and the pressure,

and a number for the hard sphere diameter and the potential offset.
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