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ABSTRACT
ENTROPICALLY DRIVEN INTERACTION BETWEEN COLLOIDS AND
THEIR SELF-ASSEMBLY
Keng-hui Lin

Arjun G. Yodh

We have made the first direct measurements of entropic interactions of colloidal
spheres in suspensions of rods (fd virus). We investigate the influence of sphere size,
rod concentration. and ionic strength on these interactions. Although the results
compare favorably with a recent calculation, small discrepancies reveal entropic effects
due to rod flexibility. Fits to the data with a bent rod model were excellent, provided
we used the persistence length less than 1 um. smaller than the commonly reported
value of 2.2 um for fd-virus. At high salt concentrations, the potential turned repulsive
as a result of viral adsorption on the spheres and viral bridging between the spheres.

We also investigated the self-assembly of colloidal spheres on periodically pat-
terned templates. The surface potentials and the surface phases were produced en-
tropically by the presence of non-adsorbing polymers in suspension. A rich variety
of two-dimensional fluid- and solid-like phases were observed to form on template
potentials with both one- and two-dimensional symmetry. The same methodology
was then used to nucleate an oriented single FCC crystal more than 30 layer thick on

a commensurate substrate. We observed surface-induced freezing of the hard sphere

viii



ix
fluid due to the patterned surface of expanding FCC(100) lattice at volume fraction
lower than bulk freezing point 54.5%. The bulk osmotic pressure of hard sphere deter-
mine the phases above the patterned substrate. The commensurate-incommensurate
transitions occurs as the system osmotic pressure increases. At very high osmotic
pressure. the system exhibits random hexagonal packed structures despite of under-
lving square template structures. The template approach provides a new route for

directed self-assembly of novel mesoscopic structures.
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Chapter 1

Introduction

Colloids consist of solid particles. with diameters ranging from 1 nm to 1 pym. sus-
pended in a fluid. They are useful systems to study for several reasons. Their size
scale fall within the realm the nano-technology and also within the realm of cell
biology. The colloidal suspensions are commonly encountered in daily life. eg. in
surface coatings, paper, paints, cosmetics, and so on. They can modify rheologi-
cal or optical properties of the carrier fluid. Related industrial applications include
chromatography. drug precipitation, oil-drilling, food processing, ion exchange. and
electrophoretic deposition. Colloids have also captured the attention of physicists.
They behave in many ways like atomic systems but can be studied in real-time and
by direct visualization. They form the basis for new classes of materials such as
photonic crystals, and the colloidal particles can be used as probes to study complex
systems on microscopic scales.

Colloids are influenced by a wide spectrum of physics and chemistry. Generally



we characterize colloidal systems by the constituent size. shape. and interparticle
interaction. Among other things, particle size and interaction determine the typical
time scale for system evolution. For instance, if there is an attractive interaction
between colloidal spheres with radius a. it induces locally bound pairs. The time ¢

required to break up the bound pairs is the relaxation time

671'17 0,3 Umin )
= - . 1.1
TR="T exp( k5T (1.1)

Here 1 is the viscosity, Upi, is the minimum of the interparticle potential. kg is
the Boltzmann constant and T is the temperature. This time scale is important to
determine whether a system undergoes the equilibrium or non-equilibrium process.
For the equilibrium process. the observation time must be sufficiently long so that the
particles rapidly access all the possible configurational thermodynamic phase space
by strong Brownian motion. 7y is about 4 seconds for 2a = 1 pm and |Upin|/ksT = 2.
Thus it is often possible to study crystallization, nucleation. melting phenomena by
the direct visualization with video microscopy.

The most commonly studied colloidal particles are spherical. Other shapes include
random coils. spheroids. rods (eg. actin filament), and disks (eg. clays). The parti-
cles can exhibit different flexibilities and the different steric structures have unique
excluded volume effects related to the possible configurations of the particles. All
of these properties contribute to the system entropy. One aspect of this thesis ex-

plores the entropic interactions between particles and examines the role of shape and



flexibility in colloidal suspensions.

The interparticle interaction determines the suspension stability. When there
is a strong attractive potential between particles, they aggregate irreversibly. Two
important interactions between colloidal particles which compete to determine sus-
pension stability are the van der Waals attractions and the electrostatic repulsions.
Derjaguin and Landau [7] and Verwey and Landau [8] (DLVO) developed the the-
ories about colloidal stability taking into account both interactions. There are also
steric, hvdrodynamic and solvation interactions in colloidal suspensions. The inter-
play between these interactions and entropy gives rise to the complicated behaviors
of colloidal suspensions. They exhibit fascinating equilibrium phases which provide
a testbed for investigation of classical many-body statistical physics.

Thermodynamics tells us the equilibrium phases are determined by its Helmholtz
free energy FF = E — TS, where E is the internal energy of the svstem. T is the
temperature and S is the entropy. The system evolves to minimize its Helmholtz free
energy. Conventional phase transitions from fluid to crystalline phase takes place if
the loss in entropy upon freezing is compensated by a decrease in internal energy; i.e.
the ordering transition is “energy driven”, not “entropy” driven. Therefore in order
to observe “pure” entropic phase transitions, the system with hard-core potential is
the ideal candidate. The internal energy is zero when the particles are not in contact.

When the system has a fixed number density, it can only evolve to increase its entropy



or have the same entropy [9].

Ludwig Boltzmann gave the statistical mechanical foundation of entropy
S=kglnQ. (1.2)

Here Q is the number of states accessible to the system given the constraints of
particle compositions N, volume V' and energy E. The Boltzmann constant kg is
introduced here, a prefactor determining the scale of S in agreement with the Kelvin
scale of temperature. The usual interpretation of entropy is that it is a measure of
the “disorder™ ! of the system. Intuitively we consider crystalline solids as “ordered”
and isotropic fluids as “disordered” because in the crvstalline phase the particles are
confined to periodic position but in the fluid phase particles can move with no obvious
positional constraints.

Many remarkably surprising phases driven by entropv are observed. There exists
the first order fluid-solid transition in the simple hard sphere svstems. The hard rod
system exhibits isotropic, nematic, and smetic phases. Mixing suspensions of different
sizes or shapes further complicates the phase behaviors. For example, the addition
of non-adsorbing polymer coils to a suspension of hard spheres lead to lower freezing
points or phase separations between sphere-rich and sphere-poor regions. The mix-
tures of rods and spheres exhibit fascinating phases bevond isotropic, nematic and

smetic phases [10]. The detailed statistical mechanical theories of the mixtures of

IC. E. Shannon’s interpretation for the framework of information theory



suspensions are complicated. However, a simple and useful model for the fundamen-
tal mechanism was first proposed by Asakura and Oosawa [11] and later developed
independently by Vrij [12]. They preved that the entropy gained by the depletants
(eg. polymers) introduce an the effective attraction between spheres. As a result, the
added polymers can be regarded as “inverse temperature” in the density-temperature
phase diagrams as atomic systems. Both colloidal and atomic systems share similar
phase behaviors in nature.

The phase behaviors and the dynamical properties of systems can be modified
by interfaces or confined dimensions. The study of physics in confined geometries
has yielded surprising results. For example, the melting/freezing transition in 2D is
fundamentally different from its counterparts in 3D which is characterized by a first or-
der transition. The theories of Kosterlitz-Thouless-Halperin-Nelson-Young (KTHNY)
tell us that 2D solids can melt via two sequential phase transitions [13, 14, 15, 16].
Colloidal systems have been used to test the theory successfully. The behaviors of col-
loidal suspensions have been observed quite differently in geometric confinements such
as patterned surfaces or periodic optical potentials in contrast to the bulk properties.
The confinement changes the fluctuations of colloidal particles and thus change the
nature of phase transitions. The presence of a surface induces a rich scenario of inter-
facial phase transitions sometimes connected with wetting or surface reconstruction.

Surface freezing is a peculiar type of wetting transition, where a liquid surface builds



up spontaneously several crystalline layers above the bulk freezing temperature. It
has been proved theoretically that a hard sphere suspension exhibit surface-induced
freezing at lower freezing point near a patterned substrate [17]. Our preliminary data
may show this kind of transition.

In this thesis we investigate hard-sphere-like systems with the entropic interac-
tions. We focus especially on the depletion interaction which arises in mixtures of
colloidal suspensions. In chapter 2 we will calculate the depletion interactions. review
entropy-driven phase transition phenomena, and discuss phase transitions in confin-
ing geometries. In chapter 3 we describe the experimental techniques needed for the
measurements including handling colloidal systems, imprinting with gratings. optical
microscopy, line-scanned optical tweezers, and the production of fd virus. In chapter
4 we discuss the measurements of depletion interactions between two spheres in a
suspension of rod-like molecules, fd virus. We test existing theories based on rigid
rods and in the process discover subtle, but non-negligible changes in the interaction
potentials from rod flexibility. The interaction measurement thus provides an inde-
pendent measurement for the persistence length of semi-flexible rods. We found that
persistence length of fd is 2-3 times smaller than the literature value. In chapter 5
we then show a rich variety of 2D phases of colloid/polymer mixtures on patterned
surfaces. The analysis of their structure functions shows the dependence of fluid-

or solid-like structures on commensuratability with patterned substrates. Our pre-



liminary studies on hard sphere crystal growth on templates of expanding lattices
suggest a key parameter, osmotic pressure [I. Three phases are observed: commensu-
rate crystals, incommensurate crystals and hexagonal packed crystals. The depletion
interaction increases the crystal growth rate but may also change the structure of
crystals. In chapter 6 we conclude with a summary of our findings and explore many

new possibilities we can study in the future.



Chapter 2

Theory of Entropic Driven Colloidal Systems

A quantitative analysis of suspension stability and phase behavior requires an accu-
rate modeling of the basic interactions between colloids. Important interactions in
colloidal systems include entropic, electrostatic, van der Waals and hydrodynamic
interactions. In this chapter we derive entropic interactions which are crucial in the
mixtures of suspensions. After understanding the nature of the entropic interactions
in colloidal suspensions, we review a few well-studied colloidal systems and their equi-
librium phases driven by entropy without going into theoretical detail. We pay atten-
tion to to the freezing/melting transitions in confined geometries and discuss useful
order parameters used in this type of phase transition phenomena. Understanding the
behavior of the model systems may shed light on our systems of colloidal suspensions
on patterned surfaces. At the end we review a recent theory [2] about precrystal-
lization on patterned surfaces which has direct implication on our experiments. We

extend the discussion to related concepts such as roughness and the commensurate-



incommensurate transition in surface science, which we may investigate systematically

in our systems in future experiments.

2.1 Rod Depletion Interaction between Two Plates

The depletion interactions between two parallel plates immersed in a solution of hard
spheres or rigid rods were first considered by Asakura and Oosawa [11]. In their
pioneering work they have commented that depletion interactions due to different ge-
ometric particles may give rise to interesting phenomena. For example, latex particles
can aggregate by adding fibrous proteins or linear polyelectrolyte molecules; however,
no aggregation of latex particles was observed early on by adding rigid spherical
macromolecules [18].

In 1981 Auvray calculated the depletion interaction between two spheres in dilute
rigid rod solution using the Derjaguin approximation. The calculation was conceptu-
ally correct, but missed a factor of 2 [19]. The correct expression was reported in [20]
wherein the calculation was also extended to the third order in rod concentration.
More recently, Yaman, Jeppesen and Marques (YJM) accounted for sphere curvature
beyond the Derjaguin approximation [21]. Other calculations have been performed for
rod-like shape depletion interactions [22, 23, 24]. The effects of such interactions have
been explored theoretically in the phase diagrams of rod-sphere mixtures [25, 26].

We first consider the rotational degrees of freedom of an infinite, thin rigid rod



N

Figure 2.1: (a) A rod near a hard wall with one end at distance z. The rotation is
restricted when z < L and the angle between the rod and the normal to the wall
is less than cos™' £ is unavailable. (b) A rod between two parallel hard walls with
separation h.

in the presence of a repulsive wall (see Fig. 2.1a). The probability of finding one
of the end of the rod at a distance r with orientation characterized by the angle
6 is given by the Boltzmann factor: f(r,0) ~ exp[—U.(r,0)/kpT|. where kg is
the Boltzmann constant, and T is the temperature and the normalization requires

[ d% [dfsin@f(r,08) = 1. The hard wall potential is

oo, if any part of the rod touches the wall
Ue(r.0) = (2.1)
0, otherwise.

The corresponding grand-canonical potential of a dilute rod suspensions is given by

Q=-

NkgT
= / &Pr / dfsin O (r.9), (2.2)

where NV is the total number of rods in solutions.

The surface tension between the plate and rod solution A~ is the difference be-
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tween the grand potential with and without a wall divided by the surface area, A:

A”/ _ Q- QQ
keT =~ A
= nk23T / %/desine [1 —-e‘Ue("o)]- (2.3)

where n is bulk number density. In the simple one wall case the surface tension can

be calculated easily

Ay [t 1 [ , L ,
— - = = —, 24
nkaT /o az [1 ) /cos-xz/L d051n0] 1 (2:4)

The positive surface tension tells us that it takes energy to create the interface of a
hard wall in a rod solution; and therefore when there are two walls, it is energetically
favorable to have two walls in contact. This is the origin of the entropic driven
attraction - depletion force. In the two wall case the surface tension is a function of

separation,

Av(h) 2 rh/2 1 /0 h h _
= — d - = 0 =—|(1-=]. .
hnT ‘4/0 z|1 2/0.; dfsin 8 1 1 5L (2.5)

where 6,(z) = cos™!z/L and 6,(z) = m — cos™!(h — z)/L. Therefore, the deple-
tion interaction per unit area between two walls is the surface tension difference for
separations h and oc:

U(h) = —%nkBTL(l —h/L)? (2.6)

We can also understand the depletion interaction from other points of view. The

attractive potential between two plates is the work done as a result of the rods exerting
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Figure 2.2: (a) The number density profile of a dilute rigid rod suspension from a flat
wall. The depletion interaction between two plates in rod suspensions. The hatched
region with thickness L/2 is the depletion zone where a rod loses the rotational degrees
of freedom when its center is in the region. (b) Plates separation h is larger than the
rod length L. The number density inside plates is the same as outside; therefore, the
osmotic pressure on both sides are balanced. (c) when h < L: the black region is the
overlapped depletion zone. The number density outside plates is larger than inside;
therefore the osmotic pressure exerted by rods inducing an attraction between plates.
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osmotic pressure onto the large plate. The force per unit area on a plate is simply
the differential pressure on its two sides II(h) = kgT[n(oc) — n(h)]. n(h) is the
number density of rods between plates with separation h. The rod chemical potential
p = 0InQ/ON (from Eq. 2.2) is proportional to the accessible volume for a rod’s
rotational and translational degrees of freedom. Therefore, the rod number density
is depleted close to the wall (see Fig. 2.2a). The depletion zone or excluded volume is
shown by hatched region in Fig. 2.2. When two plates are separated by less than L.
the osmotic pressure from outside pushes two plates together (Fig.2.2c). The amount
of work done per unit area by the rods is W(h) = [dh'II(h’) where the integration
range is the overlapped volume (dark shading).

The interaction may be best illustrated as an entropic effect by considering the
free energy F = —TAS, which is the entropy difference between two plates with
separation h > L (b) and h < L (c). Rods lose rotational degrees of freedom (and
thus entropy) when their center lies in the depletion region (hashed regions) whose
thickness extends L/2 beyond the surface of the large plates. When the large plates
approach each other, these depletion zones overlap and the volume Vjyeriap becomes
accessible to the rods and thus increases rod entropy.

In the calculation of rod entropy, we may also take Onsager’s approach by con-
sidering rod of different orientation as different “species”. Rods of orientation 8 with

respect to the normal of the wall cannot access the volume (thus lose entropy) as
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their midpoint lie within L cos 8/2 from the wall. All these views are equivalent and

have different advantages in more complicated depletion interaction calculation.

2.2 Derjaguin Approximation

The interactions between flat plates can be calculated accurately without much labor.
but often they give only qualitative physics for colloidal systems. The colloidal sta-
bility is determined by the potential per sphere compared with kgT [27]. Derjaguin
first proposed the potential between two spheres can be integrated from the potential

of two flat surfaces

[\]
~]

U,(h) = ma /h ” Upiase(2)d2. (2.

The Derjaguin approximation (Eq. 2.7) is valid when the interaction range £ is much
smaller than the sphere radius a. Fig. 2.3 illustrates the spirits of this approximation.
The curved surface of a ball is divided into rings and the total energy is the sum over
all the interaction between annuli of area 27rdr over the range of distances between
spheres, i.e.

U,(h) = 27 /0 ” Upiace(2) rdr (2.8)

where Upq is the interaction energy per unit area between two flat plates as a function

of separation. The separation between annuli and the size of annuli are related as

r?=(a+2/2)*—ad®=az + /4. (2.9)
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Figure 2.3: Schematic illustration that shows how the interaction between spheres
may be calculated from the interaction between flat plates

Only the first term of Eq. 2.9 is important when z < £ <« a. Eq. 2.7 is obtained
by using the derivative of Eq. 2.9, 2rdr = adz. This simple geometric relationship
of Derjaguin approximation Eq. 2.7 shows that sphere interaction should scale like
£aUpjate-

By utilizing Eq. 2.6 in the Derjaguin approximation. Eq. 2.7. the rod depletion

interaction between spheres is

Uroa(h) = —%kBTnaLz (1-h/L). (2.10)

2.3 Depletion Interaction Due to Spheres and Disks

Before we proceed to the non-Derjaguin regime of L ~ a, we compare depletion inter-
action between spheres due to depletants of different geometric shape. The depletion

interaction between two big spheres in the suspension of small spheres of diameter o
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potentials of spheres, disks and rods after scaling them to the same depth.
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is

Usphere(h) = = ksTnao® (1= /o). (2.11)

and the depletion interaction in the suspension of disks of diameter D is (23]

. o , |1 h? h2 h(m | h
Ldisk(h)——EkBTnaD [5(24-32-) l—ﬁ—'l—) 2 sin D . (212)

Fig. 2.4a compares three depletion potentials due to spheres (dotted curve), disks
(dashed curve) and rods (solid curve) at the same number concentration with the
same size length L = D = o. Clearly, sphere depletion interaction gives the strongest
attraction than disk and rod depletion interaction. The minima for different poten-
tials, Usphere(0) = 3/2U4isk(0) = 3U04(0), are related the objects’ allowed degrees of
freedom. The other more subtle difference is the shape of interaction potentials. Fig.
2.4b shows the potential curves are scaled by the contact value ratio. Rod deple-
tion interaction is highly curved as U,oq ~ (1 — h/L)® and sphere depletion is least
curved Usphere ~ h?. This comparison shows that the depletion interaction can probe
geometric shape of depletants.

The other interesting effect is the volume fraction. The relationships between

volume fraction and number density for different geometric objects are:

¢sphere = 1/671'0'3”, (2.13)
bgisk = 1/4mD*Lyn, (2.14)

broa = 1/4mD?iLn, (2.15)
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where we have assumed the disk is of thickness Ly < D and the rod is of diameter
D, <« L. Of the same number density, the volume fraction ratio of spheres, disks
and rods of the same size £ is £2 : €L, : D?. In other words, rods of aspect ratio
L/D, = 100 can induce the depletion interaction at the same order of magnitude as

spheres while its volume fraction is 10~ to the sphere volume fraction.

2.4 The YJM Model

Recent experiments are generally carried out with the mixtures of rods and spheres
of comparable size where the Derjaguin approximation is violated [28. 10]. The Der-
jaguin approximation gives rise to quantitatively incorrect estimate for the depletion
interaction. In the experiments of Tracy et al. [28]. the authors did not observe
the phase separation which Derjaguin model predicts. In 1998, Yaman. Jeppesen,
and Marques calculated the exact depletion potentials for arbitrary size ratio a/L.
They took into account a rod near a curved surface. \When the curvature of the
surface is considered. there are fewer excluded orientations when the rod is near a
sphere (see Fig.2.5a). Also there are two different ways for the rod to contact the
wall. When the center of rod z > m — a, the tip touches the wall; when
2 < /(L/2)? + a2 —a, the rod is tangent to the the sphere on its side. This make the
calculation of phase space available to rods between two spheres complicated. There

is no single analytic solution for arbitrary a/L. The authors expressed the potential
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Figure 2.5: (a) Possible rod orientation between two curved surface and flat surface
at the same separation. (b) Two different configurations of rod in contact with sphere
surface.
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in the following form
Uysm(h/L;a/L) = —kgTn.al?K(h/L:a/L). (2.16)

where K'(h/L:a/L) is calculated numerically. Fig. 2.6a shows K(h/L:a/L) at dif-
ferent values of of L/a. When L ~ a, the potential deviates about 50% from Der-
jaguin approximation. The shapes of potentials of small a/L do not differ much from
Derjaguin model (Fig. 2.6b). The most important modification on rod depletion
interaction between two spheres in non-Derjaguin regime is the decrease of attractive
potential because the entropy gain from overlapped excluded volume is overestimated

in Derjaguin approximation.

2.5 Bent Rod Approximation

In our experiments to be discussed in Chapter 4 the rods are not perfectly rigid. Thev
are flexibly bent. Inspired by the experimental results [1]. Lau [29] approximated
a bent rod as two stiff rods attached together at a fixed angle. Fig. 2.7 shows
that the angle is determined by the end-to-end distance and contour length, o =
cos™' R/L. The probability of finding one end of a bent rod at a distance r with
orientation characterized by (@, ¢) is given by the Boltzmann factor: f(r,d,4) ~
exp{—Uez:(r.1.0)/kpT). The surface tension of a flat wall in the bent rod suspension
can be calculated by similar approach in Section 2.1 (see Fig.2.8). The bigger the bent

angle a the rod has, the smaller the surface tension is. Thus the depletion interaction
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as a function of bending angle a.
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between two flat plates is smaller for bigger a. The depletion attraction potential

between two parallel plates has the following form

2
V(h) = —noksT [L c;’sa (1 - Lc’;sa) + r(h.a)] . (2.17)
The first term is the the depletion potential due suspension of straight rods with
R = L cos a which rotate around the midpoint of a rod and I'(h. a) is the contribution
from the rotational degree of freedom around the end-to-end axis of the bent rod.
The two independent movements of rods contribute to two decoupled term in the
interaction. Fig. 2.9 compares the bent-rod depletion interaction between two plates
with two different angles along with the straight rod depletion interaction. The
larger bent angles gives smaller attraction at contact but larger deviation from the
straight rod potential. This is qualitatively similar to our experimental data. For
the interaction between two spheres, the Derjaguin approximation is applied on the
contribution from rotation around axis wa [ dh'T' (', a) because the interaction range
is Lsina which is smaller than a. The rods in the experiment is rather stiff. The

contribution from straight rod of Lcosa is replaced by YJM model. In Chapter 4

We will compare the experimental data with the YJM-L model

h a T [®
T — 2 . ! ’
U(h) = —kgTnaR [K (R’ R) + R2./h dh F(h,a)] . (2.18)
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2.6 Equilibrium Phase Behaviors

We have discussed the entropic interaction between colloids and now we will review
equilibrium phase behaviors of a few model colloidal systems and introduce the cor-
relation function and bond order parameters which are useful in investigating phase
transitions. The phase transitions observed in colloidal systems can be divided into
two classes [30]:

(i) disorder-order transitions driven by entropic effects in systems dominated by
the repulsive interparticle potentials such as hard sphere or electrostatic interaction.

(ii) fluid-fluid or fluid-solid transitions caused by weak attractions.

The first class corresponds to the freezing transitions in molecular systems. There
are small density differences between two existing phases. The second class corre-
sponds to the gas-liquid, gas-solid transitions in molecular systems. There is distinct
density difference between two phases. The basic features of the phenomena can of-
ten be understood qualitatively with simple models for the interparticle potentials.
Detailed calculations of phase diagrams can be achieved by virial expansions, per-
turbation theories, Monte Carlo and molecular dynamics simulations with specific
potentials. The theoretical efforts have been tested and motivated by experiments

with a variety of model colloidal systems.



26

.2.7 Hard Sphere System

Hard sphere systems are interesting for various reasons. They are useful models such
as simple liquids [31} and glasses [32]. Often they are also excellent approximation
for dense-particles systems with more complicated potentials because the short-range
interparticle repulsion is the major effect in determining the structure. The existence
of a first-order order-disorder phase transition was surprising and greatly debated in
1950’s. Intuitively, the freezing arises because the attractive energy between particles
overcomes entropy loss of the systems and hard spheres lack these attractive inter-
actions. The early analytical work and computer simulations [33, 34, 35] predicted
the fluid-solid phase transition. It was not until 1980’s that these ideas were tested
experimentally thanks to major developments in colloidal science [36, 37).

The hard sphere system has two length scales: the average interparticle spacing,
commonly expressed in terms of the number density n and the particle radius a.
These two parameters lead to the only relevant dimensionless parameter, the volume
fraction of the spheres,

4
¢ = §7ra3 n. (2.19)

@ determines the pressure equation of state and thermodynamically stable phases for
hard sphere systems (see Fig. 2.10a). A hard-sphere system is athermal. i.e. there
is no temperature dependence to its grand potential, thermodynamic properties and

phase diagram because the Boltzmann factor e~U/%87 is either 0 or 1. At very high
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volume fraction, the spheres are forced to touch and the pressure diverges. The
volume fraction of random close packed spheres in three dimensions is 63.8% while
the maximum packing can be reached at 74.05% for FCC or HCP. There exists a
coexistence phase between a fluid (¢ = 49.4%) and a crystal (¢ = 54.5%). During the
transition the individual spheres give up the long range positional degree of freedom
by arranging periodically to relieve the crowding locally. This process maximizes the
system entropy. A very useful expression for the equation of state for the fluid phase

was derived by Carnahan and Starling [38],

M 1+¢+¢2—¢°
nksT ~— (1-¢)°

Z(¢) = (2.20)

where Z(¢) is known as compressibility factor describing the deviation from the ideal

gas law. For solid phase the equation of state has the expression

2.22

Z(9)

Experimentally the direct measurements of colloidal suspension’s thermodynamic
quantities such as osmotic pressure are non-trivial. Measurements of equation of
state are used to test the “hardness” of colloids (39, 40]. At low volume fraction it is
measured by extrapolating the static structure function to zero wave vector [41, 39)].
If there is density difference Ap between ppariicie and the solvent density psoivent, the
equilibrium sedimentation can be reached in few days to few weeks and used to

determine the equation of state [42, 40]. The Nobel laureate J. Perrin first noted that
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one can measure the osmotic pressure of pollen particles by observing their sediments.
In equilibrium the sedimented particle flux due to gravity is canceled by the upward
diffusive flux from more concentrated particles in the bottom. The osmotic pressure
IT at any height z must support the sum of the weight of the overlaying particles with

buoyant particle mass mg = 4/37a®(pparticie — Psolvent )
oo
[(z) = mpg / dz' n(z'). (2.22)

The density n(z) can be obtained by scattering or absorption. The variation of
concentration over height is characterized by ¢, = kgT/mgg which is called the
gravitational length (€, = 0.81 um for particles of radius ¢ = 0.5 pum, Ap = 1 g/cc.)
It takes months for particles with a = 0.5 um to reach equilibrium [43]. In the
dilute regime where [I{z) = n(z)kgT, we obtain the usual barometric law n(z) x
exp (—z/{y) by Eq. 2.22.

It is useful to understand the hard sphere system. In the following few sections
we give a qualitative description of other concentrated colloidal systems largely based
on our understanding of hard sphere systems. Expanding the hard sphere limit by
perturbation methods is often appropriate for colloidal particles with short-ranged

electrostatic and entropic interactions compared to the particle diameter.
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Figure 2.11: (a)-(c) theoretical phase diagram. (g)-(i) experimental data. 7, is the

volume fraction of the polvmer and ¢ is the volume fraction of the colloids in the
sample. The symbols denote the following: circle, fluid;: diamond gas plus liquid;
cross. gas plus liquid plus crystal; plus sign, liquid plus crystal; square gas plus
crystal: triangle. gel or no visible crystallites; star, glass.
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2.8 Sphere/Polymer Mixtures

Phase separation in colloidal suspensions, induced by the addition of nonadsorbing
polymer, is phenomenon of fundamental interest and important technological appli-
cation. The depletion of polymer molecules from the region between closely spaced
particles leads to an effective interparticle attraction, as described in Sections 2.1-2.3.
The typical depletion potential is shown in Fig. 2.11a and its range is determined by
polymer radius of gyration r,. There are numerous experiments to show that the ad-
dition of enough non-adsorbing polymers to a suspension of colloidal particles causes
phase separation (eg. [44, 45, 46, 47, 48, 4, 49]). There are also theoretical studies
(50, 51] and simulations [52, 53]. The kinetics connected with these phase separation
have been observed: nucleation and growth, spinodal decomposition, aggregation and
(transient) gelation [54, 55, 56, 57]. The structure of the final state of the system
depends on these kinetic pathways [58, 59).

The topology of phase diagrams is mainly determined by the size ratio £ = r,/a of
the radius of gyration r, of polymer over the sphere radius a. When the size ratio is
small which means shorter interaction range, there are three phases - fluid, solid and
coexistence, the same as hard-sphere systems but with larger fluid-crystal coexistence
region. For larger value of £, however, a three-phase coexistence of colloidal glass,
liquid and crystal phase is observed. The crossover between these two topologies is

found at £ ~ 0.25. The phase diagrams shown in Fig. 2.11 is plotted as 7,, the vol-
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ume fraction of polymer and @, the volume fraction of colloids. The volume fraction
of polymer ! can be considered as an inverse temperature so the diagram becomes
effectively density-temperature phase diagram. Thus, variation of the effective poly-
mer volume fraction is a way to control the “temperature” of hard sphere/polymer

mixture systems.

2.9 Charged Sphere Systems

The other extensively investigated colloidal systems are the charged polystyrene
spheres. The interaction between spheres is a screened-Coulomb (or Yukawa) repul-
sion which is derived through the linearized Poisson-Boltzmann equation describing
the distribution of screening charges around a charged sphere. Fig. 2.12a shows a
typical potential. The interaction range is determined by the screening length x~!.
When «~! is very small compared with the sphere radius a. the spheres are hard
sphere like. At low ionic strength, ! is long compared with a. The long-range elec-
trostatic repulsion can induce a phase transition at volume fraction as low as 1073
The other key parameter to describe the phase behavior is the correlation parameter
[ = U(a,)/ksT where a, = (1/n)'/3 is the average interparticle distance. This mea-
sure the ratio between a particle interactions with its neighbors and its mean kinetic

energy. The typical 3D phase diagram is shown in figure 2.12. BCC crystal structures

More correctly, we should use the effective volume fraction of polymer n,’f which only consider
the free volume left by the hard spheres instead of system total volume fraction.
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Figure 2.12: (a) A typical Yukawa-like repulsive potential with screen length x~'.
(b) Phase Diagram for particles interacting through a Yukawa potential. a; is the
average interparticle distance. I' = U(a,)/kgT

are found when the repulsion is “softer” (I' > 5 and ka < 4 .)

2.10 Correlation Function and Structure Function

It is worthwhile to review the physical meaning of the structure function and the
correlation functions which contain information about the average relative positions
of particles within an ensemble. We will also show how we calculated and analyzed
these quantities using David Grier’s IDL programs [60].

The density function which specifies individual particle positions of a system is

written as
n(r) = Z 5(r—r;). (2.23)

Features extracted from a micrograph are stored into an array of two column position
coordinates (z;,y;). The coordinates can be transformed into a 2 dimensional array

of density function by creating a 2D matrix where the value of index (z;/Az, y;/Ay)
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is non-zero (2.13) where Az and Ay are the grid sizes with respect to x and y coor-
dinates. If the point does not fall exactly on a grid point in the image, the value is
distributed among the neighboring grid points in a manner proportional to the mis-
match. The grid size can be adjusted to smaller value in order to increase resolution
but this costs the memory requirement and computation time.

Perhaps the most important ensemble averaged function is the pair correlation

function:

(n)?g(r1,r) = (n(r1)n(r2)). withr, #r,
= z (5( r —ri)(S(rg — Ly ) (224)
Al

If the system is isotropic and homogeneous, the pair distribution function is a function
of relative separation g(r,,r,) = g(|r; — ry|); it is usually called the radial distribu-
tion function. g(r)dr is the “probability” of observing another particle between r and
r +dr given a particle at the origin. Clearly g = 0 when r < 2a (2a is the hard sphere
diameter). and ¢ — 1 as r — oc because the influence of the particle at the origin
diminishes to zero as r becomes large. g(r) can be calculated directly by computing
histogram of all the pair separations r;; with i # j of the systems. i.e., counting the
number n of particle between r — r + Ar. However, because of the finite system size.
there are less particles with larger separations sampled. Therefore, we need to nor-
malize the number n by the area r? or volume r3 (Fig. 2.14). The radial distribution

function is essential in the theory of liquids. All the thermodynamic functions of the
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system can be written in terms of g(r) [61]. The total energy E is

E 3

n {o o]
=3 T 9.95
NeT — 2 ak,T )y AU ennT) (2:25)

where u(r) is particle pair potential. The equation of a fluid state is

I

—_—n -

kgT 6kBT

/ drru'(r) g(r) (2.26)

where u/(r) = du(r) /8 r. This equation is often called the pressure equation. Besides
E and II we need u, the chemical potential, in order to get all of the other thermo-
dynamic functions. The chemical potential is the energy difference when adding one
extra particle into the system. A coupling variable & is introduced. A particle is in
and out of the system by & = 1 or 0 respectively. The chemical potential y is linked
to g(r) by

K 3, .
koT = InnA +kBT/ df/ dru(r) g(r: &) (2.27)

where \ = (27h/m kgT )'/? is called the thermal wavelength with # is Planck’s con-
stant and m is the mass of particle. For coexisting phases, the chemical potential
and pressure are equal for thermodynamic and mechanical equilibrium. g and IT are
functions of u(r), the interparticle potential. Often a phase diagram is represented
as functions of volume fraction ¢ and dimensionless temperature —kgT /umi,. The-
oretically g(r) can be computed from u(r) by virial expansions, integral equations,

molecular dynamics simulations, and perturbation methods. The most common first-
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order integral equation for short-range potentials is Percus-Yevick (PY) equation [31].
e /ksT g(p) =1 + n/dr'g(r’) [g(r—r') —1] [1 - e"(')/kBT] (2.28)

In a very dilute limit (n — 0), g(r) and u(r) have simple relationship
g(r) = e~u(rV/ksT, (2.29)
Experimentally one often measures the scattering function of the system, instead
of the correlation function. These two functions are Fourier transform (FT) of each
other. In the weak scattering limit (Born approximation), the static scattered inten-

sity is given bv the following expression:
I{q) = /dl'1dl'2 e~ ) (n(ry)n(r,) )

= [drieemn(r) [ dr,evein(r,)

(n(q)n(-q)) (2.30)

where n(q) = [dre™¥"n(r) = ¥; 79" is the Fourier transform the density func-
tion. The scattering measures the density-density correlation function. There are
several commonly used functions related to density-density correlation function. The

structure function S(q) measures the density fluctuation dn(r) = n(r) — (n).
1 . ) 2
S(q) = T l:/dl‘ldl'g e -2 §n(r,) 6n(rs) ) + ./dr e 'Y (n(r) )’ ] (2.31)

For isotropic, homogeneous fluids S(q) and g(r) is directly related as

S(q) = (n) [1 + (n) /dr e“""’g(r)] . (2.32)
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Figure 2.13: (a) shows a group of points of position (z;,y;) and (b) shows a surface
plot of a two dimensional array with non-zero value at (z;. y;).

They are Fourier transforms with respect to each other with the scaling and offset
related to the average density (n).

It is convenient and fast to compute the Fourier transform of an image by built-in
FFT function in the program. To reduce the artifacts due to finite size computation,
it is important to have large number of data points in the system. Details in the

discussion of computational FFT can be found in {62].

2.11 Bond-Orientational Order

Exotic phases have been discovered which lie between isotropic fluids and periodic
crystals. More parameters are needed to distinguish different structures. The trans-
lational symmetry is measured by the correlation function or the structure function
of particle positions r as discussed above. A broken rotational symmetry can be mea-
sured by the correlations in the orientations of locally-defined crystallographic axis

[63]. In contrast to conventional liquid crystals, the orientational anisotropy refers to
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Figure 2.14: The scheme of calculating pair correlation function.

the “bonds” joining near-neighbor atoms, rather than an anisotropy in the constituent
particles.

Bond-orientational order is an integral part of the two-dimensional melting theo-
ries. It is convenient to define a bond-orientational order parameter by designating
f(r) to be the angle between the local bond direction at position r and some arbi-
trary reference axis. In a two-dimensional crystal with n-fold rotational symmetry.

the bond-orientational order parameter is defined as

1 &
P, (r;) = ¥ Y entutn) (2.33)

Vi =1

where the sum is over all neighbors j of particle ¢ divided by the number of neighbors
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N;. &,(r) is invariant under C, rotation. ®,(r) has two parts: a magnitude, which
is not related to the symmetry, but which is a measure of the degree of order, and
a phase. The phase is the symmetry breaking parameter. The bond-orientational

correlation function can be calculated as
gn(r) = (®n(r) ©,,(0) ). (2.34)

Given a density distribution function n(r), ®, can be computed through different
schemes. First is to identify the neighbors. We can also use “metric neighbors™ by
finding all the particles within certain separation from one particles. We employ
the Delaunay triangulation to find “geometric neighbors™ and thus 6;;(r). It has
generally been found that the global properties of ®,, are insensitive to the definition
of “neighbors™. We can also use the edges of the Voronoi cell as “bonds™. The Voronoi
diagram is the dual of the Delaunay triangulation. The results of these two methods
come out identical. Fig. 2.15 illustrates two approaches. It saves programming and
computation time to find the neighbors by Delaunay triangulation or Voronoi diagram
because theyv are well-solved problems in computational geometry. For 2D analysis
there are built-in programs in IDL. For 3D analysis, there is freeware ghull available?.

In two dimensions, the most used global bond-orientational order parameter ®g is

1 Y e, (2.35)

(I)G =
-Nbond i g

2Download and instruction website http://www.geom.umn.edu/~bradb.
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Figure 2.15: A voronoi cell of point 7 are generated by the bisectors of points i and all
other points. If one draws a line between any two points whose voronoi domains touch,
a set of triangles is obtained, known as the Delaunay triangulation. The number of
edges is the same as the number of triangulation bonds r;;. We can choose the angle
6:; between the bond r;; to a reference axis, say z-axis or the angle 6; between edge
ab to the reference axis because | — 8’| = 90°.
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where ¢ runs over all the particles in the systems and j runs over all neighbors of
the particle i and :Vyong is total number of the bonds between ¢ and j. ®¢ measures
the coherence of sixfold symmetry in the system, which is characteristic of hexagonal
closed-packed state (HCP) in two dimensions. For a perfect HCP lattice ®¢ = 1 while
®6 ~ N2 for an ideal gas [64].

In three dimensions, the orientational order parameters are generalization of the
two-dimensional order parameter [63]. The analysis first associates a set of spherical

harmonics with every bond joining the particle ¢ to its neighbors.

Ni
Qun(9) = 3 3= Yim(B(r:3), 6(x1)) (2.36)

ij=1
where Y;,(0, ¢) are spherical harmonics, r;; is the direction of the bond with (r;;),
o(r;;) with respect to a reference coordinate system and .V; is the total number of
neighbors of particle . In Steinhardt et. al. analysis they found important parame-
ters which should be orientationally invariant to identify the crystalline symmetry as
“shape spectroscopy” [63]. For example Q; is the “finger print” for crystals with cubic
symmetry and Qs for icosahedral oriented systems where the second order invariant

Q. is defined as

2A+1

=

4 m=l 1/2
Ql=[ = > IQ?,,,I] (2.37)
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where Q. is the global average quantity. The third-order invariant W is defined as

W, = S X Qm, Qimy Qimg (2.38)
m;,ma,m3 m; Mz Mg

my +mz2+m3 =0

where (:::) stands for a Wigner 35 symbol. W, is a sensitive to distinguish bcc
structure from fcc and hep. In the recent experiment by Gasser ef. al. [65] they
used Q;. Qs and Wy to identify the nucleation cluster in the weakly charged sphere

systems.

2.12 Colloidal Suspensions in Confined Geometries

The nature of the melting transition in two-dimensional systems has been a matter of
great interest and often hot controversy since nearly 30 vears ago. As the dimension-
ality of space is reduced, the fluctuations around mean-field behavior become more
pronounced and destroy the long-range periodicity of a two-dimensional lattice at
finite temperatures. 2D solids exhibit quasi-long-range translational order, character-
ized by a power law decay of the positional correlation function and long-range bond
orientational order while 2D liquids exhibit short-range order where the order param-
eter correlation functions decay exponentially. The melting transition is through an
intermediate hexatic phase with short-range translational order and quasi-long-range
bond orientational order. The two-dimensional melting mechanism is summarized by

Kosterlitz, Thouless, Halperin, Nelson and Young (KTHNY) (13, 14, 15, 16]. Accord-
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ing to KTHNY theory, 2D solids melt via 2 sequential continuous phase transitions
mediated by topological defects. The first transition from a 2D solid to a hexatic
phase is driven by the dissociation of topological defects, i.e., bound dislocation pairs
in the solid. The second transition from hexatic phase to 2D liquid is caused by
dissociation of individual dislocations to form disclinations.

Enclosing a colloidal suspension between two smooth parallel walls that repel
colloidal particles in the spacings of a a few particle diameters is a straightforward
method for creating a two-dimensional layer of colloids. The systems have been
proven convenient model systems for experimental and theoretical studies [66, 67, 68].
Recently there are exciting developments in both experiments on 2D freezing/melting
by the presence of a 1D periodic potential [69, 70]. It is denoted as laser-induced
freezing by subjecting a 2D colloidal suspension to a one-dimensional potential made
by the standing wave pattern of two interfering laser beams. When the periodicity
of the light pattern is commensurate with the mean particle separation, the colloidal
liquid freezes into a solid at certain light intensity strength. Theoretical models find
novel phases such as “modulated liquids”, “floating-solid”, “locked-floating-solid” and
2D smetic phases [71, 72, 73, 74, 75]. The topology of phase diagram depends on the
relative orientation of 2D crystal to the periodic potential troughs which selects a
set of Bragg planes running parallel to the troughs and the commensurability ratio

p = a’/d of the spacing a’ between these Bragg planes to the period d of the periodic
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potential [74, 75]. The 2D-melting scenario proposed by KTHNY is affected by the
presence of a periodic 1D potential. As the strength of the potential increases, a
2D liquid first crystallizes in hexagonal order and then melts again to a modulated
liquid. This shows that the particle fluctuations suppressed by optical potentials are

essential to the nature of phase transitions.

2.13 Surface Freezing On Patterned Substrates

Recently Heni and Lowen considered the phases of a hard sphere suspensions near
topologically patterned walls corresponding to FCC lattice cut along the (111), (100)
or (110) orientation, a HCP (100) orientation and a rhombic lattice distorted with
respect to the triangular one. They derived the scaling relations for thickness of
crystal based on the phenomenological theory of the hard sphere fluid in contact
with wall; the fluid may “condense” into “droplet of crystals” on the patterned walls.
They confirmed their phenomenological theoretical results by computer simulations.
The theoretical substrate was composed of fixed hard spheres forming a periodic two
dimensional array and the fluid was composed as hard spheres of the same diameter
as the fixed wall spheres. By computer simulation, they found that a pattern which
is commensurate with the bulk crystal can initiate complete precrystallization with
an onset far away from the bulk freezing transitions and the complete and incomplete

wetting depends on the type of the surface patterns. For instance, fcc(111) produced
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complete wetting while fcc(100) and (110) gave incomplete wetting. When there are
distortions of lattice mismatch between bulk phases and the substrate, the wetting
can be either incomplete or prevented.

The phenomenological theory is similar to the theory of wetting. They computed
the difference ¥ of the grand canonical free energies per unit area for a wetting and a
non-wetting situation. This quantity is discussed as a function of system parameters
and a crystalline sheet of thickness ¢ (see Fig.2.16). ¥ is contributed from bulk/surface
thermodynamics, and effective interface interactions and elastic distortions of the solid
[76]

= +%+%;. (2.39)

The first term is the surface tensions 7y, Vs and v,y of three interfaces wall-solid,

solid-fluid, and patterned wall-fluid

21 = Yws + Ysf — Ywf (240)

which determines the wetting of the phases. A necessary condition for wetting to
occur is ¥; < 0. vy, and 7,5 depend on the wall pattern. v,; depends on the relative
orientation of the planar solid phase with respect to the fluid and have been calculated
for hard spheres by computer simulation in different orientations {77).

The second term describes the energy of the bulk crystalline layers. The adjacent
crystalline layers are taken to have exactly the same structures as the wall patterns

and exhibit no spontaneous shearing. The coexistence bulk crystal favors the square
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b)

e,

Figure 2.16: Schematic drawing from [2] of a hard sphere fluid in contact with a
patterned wall. It can either just flow around the structure forming an inhomogeneous
fluid (a) or form a crystalline layer of thickness ¢ following the structure imprinted
on the surface (b).

lattice constant ag = 1.10750 ( o is the hard sphere diameter). If the square wall

pattern of lattice spacing a # ag is incommensurate with the coexistent bulk crystal.

it causes a strain €

e=v22-92 (2.41)

ap

which describes the relative distortion. The free energy penalty ¥,(¢) from small
distortion € can be calculated as an expansion of the energy around the coexisting

bulk crystal by harmonic elasticity theory [78], i.e.,
,(0) = Be%¢ (2.42)
3 can be expressed in terms of the elastic constants of crystals C,,. For an FCC crystal

of hard spheres, C;; has been calculated at different densities including melting point

[79]. The elastic energy can be re-expressed as

T,(8) = aAll¢ (2.43)
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where a = (¢, — ¢5)/dy = 0.103 is the relative density jump between solid and
fluid at the bulk freezing point and AIl = II, — II is the difference between the bulk
equilibrium fluid pressure P and the bulk pressure Pc at coexistence.

The third term is the effective interface interaction ¥; which can be from long
range interaction such as the van der Waals interaction or the gravitational force
between wall and fluid between the wall-solid and the solid-fluid interface as a function

of their average distance ¢ [80].
T3 =ye (2.44)

where v, is a prefactor and ¢; is the correlation length in the bulk solid at fluid

coexistence.

Putting 2.40-2.44 to 2.39, we have
2(€) = Yws +¥sf — Yws + @APC+ ygexp (—E/6). (2.45)

Minimizing ¥ with respect to ¢ yields the equilibrium profile and the authors found
the following scaling relations which no longer depend on interfacial free energies
near the coexistence: (i) when ¢ — 0 and there is complete wetting, the thickness ¢
diverges logarithmically with AP. (ii) For € # 0, there is incomplete wetting and the
maximal thickness which is achieved at AP = 0 varies logarithmically with €. (iii)
For a stretched or shrunken lattice, the lowest possible prefreezing pressure can be

calculated. They will have a lower prefreezing pressure at slightly expanded lattice.
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In their simulations, they use bond order parameters (®,, ®, and ®¢) to detect
laverwise precrystallization. For the triangular patterns, ®¢ is used and for square
patterns ®, is used. For FCC(110) and HCP(110) patterns ®, is applied. The density

profile n(z) is defined as
n(z) = /w /oo dzdyn(z,y, z) (2.46)
—00 J—00

where n(z, y, z) is the density function. The minima of n(z) define the spacing of the
nth layers in the z-direction. The analysis of an order parameter in the nth layer is
performed for all the particles of a chosen layer.

Based on theoretical prediction on hard sphere fluid near FCC(100) wall, the
growth of the wetting layer saturates at 3.90 as the volume fraction approaches to
54.5% and the lowest prefreezing volume fraction is 42% in the expanded lattice.
When ¢ is larger than the critical distortion ¢, = 0.09, the large free energy cost of

elastic distortion prevents the system from surface freezing.

2.14 Roughness

In the Heni and Lowen simulations, they do not address the roughness of the solids
and the commensurate-incommensurate transition. Both are important issues in crys-
tal growth. The roughness is important to determine the growth rate, growth sites
and surface relaxation. Kinetic roughening is still an on-going fascinating research

subject which describes the stochastic surface growth. The real-time investigation
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Figure 2.17: Roughening transition (a) T < Tg and (b) T > Tk
in colloidal systems makes the measurement of scaling exponents of roughness pos-
sible. In a recent experiment [81] investigating the dynamic scaling of roughness of
crystals by sedimenting SiO, nanospheres and concluded the interface growth close
to equilibrium.

The roughness can be characterized by height-height correlation function
GR) = (| 2(r) — z(r + R) [*) (2.47)

where R = (z,y) is a point of the two-dimensional (z,y) space and z is the height as
a function of (z,y). There is a roughening transition. At low temperature the surface
would like to be smooth. At high temperature there are more and more fluctuation
of surface. The nature of this transition can be understood from two competition

term in free energy F = U —T'S. A step cost some finite energy W but a step is also
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favorable to increase the system’s entropy. Thus below the roughening temperature
Tr it takes work to introduce a step into the surface while above Ty it takes work
to remove steps from the surface. The interest of this function is that qualitatively

different behaviors occurs above and below Tx

Jlim G(R) ~ 2K(T)Ing, T < T

~ 2K(T)InR, T > Tr (2.48)

where £ is the correlation length for G(R). It is finite below T and divergent above
Tr. The coefficient K(T') behaves in a characteristic way for Korsterlitz-Thouless
(KT) transition [82]. Above T the discreteness of crystal lattice become negligible,
the surface free energy is proportional to the surface area. If we include the effect of

gravity, the free energy F associated with surface shape fluctuation is
1 2
F = ——5// drdy [Adg22 + (22 + :;)] (2.49)

where + is surface tension, Ad is the density difference between the particle and the
solution and :, = 02/0z,. From equipartition theorem, the correlation function

G(R) can be expressed as

1/a 2kgT

where a is the lattice spacing of the crystal. From Eq. 2.50, gravity can kill the

roughening transition. If the length 1/q is shorter than the capillary length A

A =/v/Adg, (2.51)
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the role of gravity is negligible. In colloidal systems « is of order kgT per particle. The
resulting value of A is of microns. The roughness of an equilibrium surface between

fluid/solid interface is more significant under microgravity.

2.15 Commensurate-Incommensurate Transitions

When particles nucleates into a crystal on a foreign substrate at equilibrium, there are
two competing effects. There is a favored bulk interparticle separation a determined
by interparticle interaction. The particle-substrate interaction forces the particles to
the lattice parameter of the substrate b. For a given lattice misfit. if the particle-
substrate interaction is strong, the commensurate structure (a = b) is stable while
the incommensurate structure (a # b) is stabilized by strong interparticle interaction
(See Fig. 2.18a and b).

It is also possible that the first monolayer is commensurate and become incom-
mensurate when the number h of layer become larger. When h becomes large, the
structure becomes incommensurate at equilibrium. The energy gain from the struc-
ture into preferred distance a is proportional to the layer volume and eventually
overcomes the energy loss due to giving up commensuration. The appearance of the
incommensurate structure requires the introduction of misfit dislocations (See Fig.

2.18c).
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Figure 2.18: (a) commensurate structure of particles on a square lattice. (b) incom-
mensurate structure. (c) schematic drawing of misfit dislocations. Lines represent
lattice planes. Thick lines are for substrate lattice planes and thin lines for the ad-
sorbate ones.



Chapter 3

Experimental Methods

In this Chapter we discuss experimental procedures relevant to all the experiments.
We discuss (i) the suspensions of colloidal spheres commonly used in the lab [83];
(ii) how to manufacture grating-assisted imprints and sample chambers for template-
directed colloidal crystallization experiments; (iii) video optical microscopy and laser
tweezers which are our main measurement tools; and (iv) fd virus preparation and

properties.

3.1 Polystyrene Spheres

The most common commercially available model colloidal svstem is an aqueous sus-
pension of polystyrene spheres. Polystyrene spheres are accurately spherical and
generally monodisperse. They are also available in a large range of sizes and they can
be made to fluoresce. The deansity of polystyrene spheres is 1.05 g/cc and the index of
refraction is 1.59. It is easy to density match polystyrene particles with heavy water;
however, its high index of refraction makes it extremely difficult to observe bulk struc-

33
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ture of suspensions at high number density. So far we have not found a reliable way
to stabilize polystyrene particles in organic solvents. The particles are composed of a
large number of linear polystyrene molecules associated with hydrophilic groups such
as sulphate groups (—SQOy ), carboxylate group (—COOH ) or amine group (—NH, ).
These end groups ionize in water (or other polar liquids), releasing counterions, usu-
ally H* and the particles become negatively charged and stabilized. The electrostatic
interaction between these particles can be controlled by the solution’s ionic strength.
which determines the inverse Debye length 1/x. It is possible to have extremely long
screening length by adding the ion exchange resins, which scavenge excess ions. By
adding extra electrolyte, it is possible to decrease the screening length to a few nm so
that the particles act as hard spheres. The practical way to calculate the screening

length is through the relationship

1 .
K

vV X 2?[ Salt ]

where z, is the charge valence and [ Salt | is salt concentration in M. Thus for 10
mM NaCl the screening length 1/x is 3 nm. The proteins can be attached onto
polystyrene spheres through standard biochemistry technique which can be useful for

probing bio-microsystems.



3.2 Silica Spheres

Colloidal silica particles are charge stabilized, but can be dispersed in a variety of
organic solvents. The density of silica spheres is high, ranging from 1.5 to 1.9 g/cc
and the refractive index ranges from 1.45 to 1.49. The variety is attributed to parti-
cle porosity. The particles can be well index matched in aqueous solution by adding
glyvcerin. There are no commercially available fluorescent silica particles but there are
core-shell fluorescence silica particles developed by the Netherland group [84]. The
silica spheres can endure more chemical processing. Very often the silica colloidal crys-
tals are used as a template for imbibing different materials to manufacture photonic
crystals. In our lab, the most common use for silica spheres is as probing particles
in the interaction measurement in the line tweezers. The lower index of refraction
makes it favored to stay in the line scanned optical tweezers while the polystyvrene

particles are often kicked out probably due to the distortions of the trapping beam.

3.3 Polymethylmethacrylate Spheres

We have used polymethylmethacrylate (PMMA) spheres stabilized by a grafted layer
of poly-12-hydroxystearic acid (PHSA) [85, 86] for our colloidal assembly studies.
Because they can be index matched by choosing appropriate solvents, these particles
facilitates optical microscopy in order to look deep into the sample, even at high con-

centrations. These particles are not commercially available. They were synthesized
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and provided by Andrew Schofield (abs@ph.ed.ac.uk). The particle density was about
1.19 g/cc, and the index of refraction was about 1.49. The colloids come in dodecane,
and sometimes have vellowish impurity. To clean the particles. Andrew suggested fil-
tration through glass wool to remove the impurity. Normally we redispersed them in
the desired solvent, centrifuge them few times and then extract the clean beads from
the top. These PMMA particles have been studied extensively as a colloidal model
system of nearly hard spheres [83]. However, some solvents may alter the properties

of the colloids. e.g. by charging the particles.

3.3.1 Fluorescence Labelled PMMA Particles

In order to be observed in the confocal microscope. the PMMA particles were fluo-
rescence labelled with rhodamine 590 (C3H3oN2Oj3, Aldrich No. R4127). This recipe
was first developed by Andrew Levitt. The PMMA particles were first swollen in the
solvents (cyclohexanone and ethanol!) with fluorescence dissolved. The fluorescence
dye is a hydrophobic molecule which can be adsorbed onto PMMA. The particles
were redispersed into the solvent which fluorescence dye is insoluble to. Thus the
fluorescence dve is “trapped” inside PMMA core and increases the size and density
of particles by few percent.

\We start with clean colloids in dodecane at 10- 20% in volume fraction and add

the fluorescence solution by the half amount of original colloidal solution volume. The

! Acetone in the original protocol.
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fluorescence solution is prepared by dissolving rhodamine 590 in 25% ethanol /75% cy-
clohexanone mixture at the concentration of 1-1.5 mg/ml. Initially the dyed mixtures
look purple but turn orangish after shaking it for 5 - 10 minutes which indicates the
inclusion of fluorescence molecules to the core of particles. We also double check the
complete dyve incorporation into colloids by fluorescence microscopy. The fluorescent
solvent is removed after centrifuging the suspensions for 10 minutes at 2000 RPM.
Afterwards, the colloids are washed by repeatedly dispersing colloids in fresh decalin
and centrifuging them. In the first few runs it is difficult to redisperse the particles
in decalin. We need to vortex the solution very hard for a long time in order to break
the large lump of colloidal aggregation. The repeated decalin wash is to ensure no
excess fluorescence and no other solvents (dodecane, cyclohexanone. ..etc.) stayed in
the colloids. After this stage, we can start index-matching or density-matching with
the desired solvent. The resulting spheres can be seen using FITC and rhodamine.
The fluorescence particles are less stabilized however. For example, they aggregate
into gel-like structure in dodecane where the non-fluorescence particles are stable.
At higher concentration of added polymers the particles aggregate irreversibly e2s-
ily compared with the non-fluorescing particles. The swelling process may destroy
some steric PHSA layer and weaken the stabilization between particles. They are
not exactly hard sphere like. The particles may act like charged particles under some

conditions.
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3.3.2 Solvents for PMMA particles

A variety of mixtures of organic solvents have been used for density matching and
index matching the particles. In order to have density 1.19 g/cc, the organic com-
pounds usually contain halogen molecules, amine or carboxylate groups. But amine or
carboxyl groups usually gives higher index refraction (> 1.55). Solvents may change
the physical properties of colloids significantly. The complication from the chemistry
due to solvents make the systems hard to control. This is still under the investigation
of various groups. The solvents used in the literature are decalin ( C\gH,z ), tetralin
(CioHy2), carbon disulfide ( CS, ), cycloheptyl bromide ( C;H;3Br ), and carbon tetra-
chloride (CCl; ). We also tried cyclohepxyl bromide ( C¢H,,Br ), tetrachloroethyelene
(C2Cly) and few other organic solvents. Table 3.1 summarizes the density d and the
index of refraction n of different solvents. It was first reported that CS, penetrates
the PMMA core [87] resulting in a slight increase (~ 3%) in the radii. We observe
similar phenomena with various solvents. The penetration is usually complete within
a few hours to a few days after being dispersed in the new solvent and it can be
accelerated by heating at 50 — 70° C?. The imbibing also changes particle’s density
and index refraction slightly. We observed the swelling effect by sedimenting particles
into crystals at different solvents (the density mismatch > 0.1 g/cc). After a few days,

the sedimented crystals should have volume fraction close to 74% for hard-sphere like

*Private communication with Russel group at Princeton
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Chemical Formula Density (d) Index of Refraction (n)

CioHis 0.896 1.475
CioHi2 0.973 1.541
CS, 1.266 1.627
C+Hy3Br 1.289 1.505
CCl 1.594 1.46
C.Cl 1.623 1.504
CeH11Br 1.324 1.495

Table 3.1: Common Chemical Solvents Used for PMMA particles

particles. We calculate the hard-sphere diameter from the interparticle separation
shown in Table 3.2.

A more serious effect on the particles from the solvents is the possible charging
effect which renders the particles not hard-sphere-like. The surface of PMMA beads
contains PHSA which contains carboxylate group, it may ionize in the polar solvents.
This may also explain why rhodamine-dyed particles are more likely to be charged
from —Cl. Originally we used cycloheptyl bromide (CHB) and cyclohexyl bromide
(CXB). But both swelling and charging effects are quite prominent in the dyved par-
ticle systems. Molecules with high symmetry are more desirable because they are

less polar. CS; and CCly are highly toxic and volatile. tetrachloroethylene (TTC)
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Particles  Solvents Particle Diameter (pm)

NF dodecane 1.30
NF dec & TTC 1.32
NF dec & CHB 1.38
NF dec & CXB 1.39
F dec 1.39
F dec & TTC 1.40
F dec & CHB 1.46
F dec & CXB 1.484

Table 3.2: Swelling Diameters in Different Solvents
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Particle Solvents Freezing Point

NF decalin, tetralin & TTC 45-50 %
F decalin, tetralin & TTC 45-50 %
F decalin & CHB 30-40 %

F decalin & CXB 30-40 %

Table 3.3: Freezing Point of PMMA Particles at Different Solvents

which is commonly used in dry clean industry appears suitable. We measured the
freezing transition points between fluorescence (F) and non-fluorescence (NF) PMMA
particles at different solvents to determine the charging effect. The electrostatic re-
pulsion between particles lowers the freezing-melting transition point. The result is
summarized in Table 3.3.2. The phase behaviors of fluorescence particles with added
polymer in decalin/tetralin/TTC is more similar to non-fluorescence particles than
fluorescence particles in dec/CHB and dec/CXB.

Tetrachloroethylene (TTC) may dissolve epoxies which are used to seal the cham-
bers and the optical glue for templates. The problem becomes more serious in the
thick chambers. The colloids aggregate throughout the whole sample. There should
be no contact between the epoxy and solvents before it is fully cured. All the tem-

plates should be left overnight after its first cure.
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Overall the mixture of decalin, tetralin and tetrachloroethyelene gives more consis-
tent results. Sometimes the chemistry also depends on the original batch in dodecane.
We found some non-fluorescence particles with strong electrostatic repulsion in do-
decane. Moreover, even within the same sample the electrostatic repulsion between
different pairs can be quite different. de Hoog completed a thorough investigation
of fluorescent PMMA particles suspended in various solvent for use in CSLM [88|.
They found that water moisture contained in the solvents affects the charging of par-
ticles. They applied an electric field to PMMA particles in 96% CHB and found out
the particles were positive charged. Their explanation is that halogen-carbon bond-
ing can dissociate in the presence of water which will lead to a substitution of the
halogen with a hydroxyl group and the formation of a proton and halogen ion. The
proton can protonate ester groups of PMMA particles which give positively charged
PMMA-particles. In the control sample with distilled and purified CHB, the obvious
repulsive interaction between particles disappear. This may account for the poor re-
producibility of the systems and the inconsistent phase behaviors from one batch to
another. To produce more reliable results, we must develop better understanding of
the chemical issues.

Throughout the sample preparations for experimental studies, the weights of var-
ious components (particles, solvents, polymer etc.) are accurately measured. How-

ever, the quantity of interest in analyzing experiments is the volume fraction ¢. The
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imbibed solvents can change the density of PMMA particles. We determine the
density of particles by centrifuging the particles in different solvent density. In the
dec/tetra/TTC fluorescent PMMA particle density is between 1.245 — 1.25 g/cc. Af-
ter measuring the particle density, we lower the density of solvent slightly. centrifuge
down the particles and remove excess solvent by placing the vial upside down about
1 minute. At this stage, the particles are randomly close packed with volume fraction
¢ = 0.66 of amorphous sediment formed by centrifuging samples [83]. A more precise
way to determine the volume fraction may be to perform viscosity measurement of

dilute suspensions through Einstein relation:
n=n(1+25¢+"-) (3.2)

where ng is the viscosity of the suspension medium. However, reliable extrapolation
to high concentrations requires extremely accurate measurements with temperature
control and also it assumes that particles are hard-sphere like. Most samples of our
interests are prepared in high concentration (¢ = 40%) and through dying process

and other modification of the systems, the particles may not be hard-sphere like.

3.4 Template-Directed Colloidal Assembly

Colloids can self-assemble into a wide range of highly ordered phases [60, 89. 90, 37,
91]. Experimentally it is known that hard-sphere-like colloids generally crystallize

with a random stacking of close packed planes [92, 93, 94]. Theoretically the free
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energy difference between fcc, hep or rhep are of the order of 1073 kT per particle[95].
Colloidal crystals can also be induced by external force such as gravitational {96],
convective [97, 98, 99, 100, 101], and electrohydrodynamic {102] forces. However.
many schemes with external force involve layer by layer growth. Naturally in 2D
the most close packed patterns are hexagonal structure which allow two possible
nucleation sites. Thus there is no single crystal formed.

The pioneering work by van Blaaderen, Ruel and Wiltzius {96] apply the idea from
molecular beam epitaxy by growing single crystalline on an oriented crvstal facet.
They construct a pattern of holes commensurate with the 100 plane of fcc crystals
by e-beam lithography. They found a pure fcc single crystals formed. The crystal
extended to hundreds of layer thick and as large as the template size. The combination
of patterned surface with external field induced crystallization has become a new
paradigm in the field of colloidal assembly.

E-beam lithography advanced the microelectronic industry. The resolution can
achieve as small as 50 nm. However, there are many practical factors to limit e-
beam assisted templates widely available. First e-beam lithography machine is very
costly. Second writing large areas of patterns takes a long time. Third to generate
the patterns with large holes in small separation the proximity effect becomes serious.
With the SEM at Johnson’s lab, we were not able to produce the same patterns in

van Blaaderen’s work.
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3.4.1 Imprint with Gratings

Imprint or stamping techniques provide a simple way to make replicas of surface
structures [103]. It has also been demonstrated to produce features as small as 10
nm, [104] but one still needs a mold made by photolithography or e-beam lithography.
We use commercially available optical gratings as molds to avoid the difficulties of
generating closely spacing features (< 1 um) by conventional lithography. We have
therefore employed the imprint technique with an optical diffraction grating to create
a geometrical template. We choose a ruled grating with big blaze angle. There are
also holographic gratings with shapes like sinusoidal profiles. The smallest pitch on
commercial catalog is 0.2 um. Few companies take order for custom-made ruled grat-
ings 3. The commercially bought gratings are actually replica gratings whose grooves
are formed in a very thin layer of resin adhering strongly to the surface of substrate
material. For reflection replica the surface is usually coated with aluminum, gold
or platinum. The grating making process itself is an imprint process. The master
gratings are ruled on well-annealed substrate like BK-7 optical glass. fused silica, or
aluminum with optical flatness of A\/10. The ruling process is a long, slow and gru-
eling process which takes up to a week. Special attention is paid to the the change
in temperature, pressure and the isolation from vibrations. After the master grating

- is done, the replication process starts with submaster grating which is directly repli-

3Diffraction Products, (815)338-6768. Optometrics USA (978)772-1700.
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cated from the master grating. A parting agent which helps the separation of replica
gratings is added onto the submaster grating and then a layer of reflective coating is
applied. A thin layer of liquid resin is sandwiched between the the submaster groove
and the substrate and cured fully to harden the resin with the groove profile repli-
cated faithfully. After separation the replica grating is identical to the original master
grating. Because these are industrial process, we are not able to find the recipe of
applying parting agents which is very useful in developing imprint technique.

There are mainly two ways of making imprint and we used both schemes for
different kinds of template. The first method we emploved was developed by Chou
et al. [104]. We called it thermal imprint. The idea is to replicate structure on a
thermoplastic. Thermoplastic is linear polymer and when it is heated above glass
temperature. it becomes liquid like and readily deformed. A mold is pushed onto
thermoplastic with some pressure. The plastic is removed from the mold after cooling
down and it becomes the replica of the mold (Fig. 3.1). In the first generation of
template, we used PMMA spin-coated on a glass substrate as the themoplastic. The
thickness of PMMA can be controlled by the PMMA solution concentration and the
molecular weight and spin speed *. A trace amount of pyrromethene 580 is sometimes
added into PMMA solution to inspect the template by fluorescence microscopy. Heat

PMMA above its glass temperature of &~ 100°C, creates a replica of the grating in

{PMMA solution is purchased from Microchem Corp. 617-965-5511
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Imprint Scheme

Commercially avaiiable
a grating pitches range
R L A S HINeeE@:3 micron to 10 micron.

AGlAISNbRNER - T T PMMA layer
(>200 nm thick)
Press a grating onto PMMA layer while
heating PMMA above its glass temperature.

ﬁ(emb'\'/';'i—l';e ?
PMMA is cool.

Figure 3.1: The schematics of thermal imprint.

the film (Fig. 3.2A). By rotating the substrate 90° and imprinting a second time, we
create two-dimensional periodic structures, resembling an array of square pyramids
(Fig. 3.2B). One problem of thermal imprint is that the heat destroys grating which
is made out of epoxy. The epoxy starts to degrade above 70 degree. On the average
an original optical grating can be used 10 — 20 times.

The second method of imprint was developed by Whitesides' group [103]. The ba-

sic idea is to crosslink liquid monomer or polymer on the mold. Once it is crosslinked,
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Figure 3.2: AFM scan of (a) line grating template and (b) crossed grating template.

it becomes solid like. The drawback of this technique is that we cannot imprint twice
at different direction. The advantage is that it has higher fidelity to the mold and
it does not destroy the mold. But separating the mold from the crosslinked polymer
can be tricky. I have tried few polymers. The elastomeric PDMS (polydimethylsilox-
ane) is the most popular materials for imprint. We use the two component Sylgard
184 developed by Dow Corning °. Silanizing the mold with hexamethvldisilazane
(HDMS) or fluorosilane will help the release of the mold. This treatment turns active
—OH group on the mold into inert —CHj; or —CF}; so that the cast polymer does not
adhere to the mold. However, PDMS is swollen by hydrocarbons so it can not be
used for the organic PMMA systems. Also it is very hydrophobic: thus in order to use
it for aqueous systems, the surface must be oxidized by oxvgen plasma. The surface
polymer with —~Si— becomes hydrophilic —SiO,. However, excess oxidization process

can destroy the surface pattern. The surface treatment can also been achieved by

SFrom the distributor Essex 1-800-805-4636.
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sputtering a thin laver of metal like gold or reacted with halogen acid [105].

We also used optical glue as cast polymer. Two advantages to use optical glue:
first. curing by UV is fast. Usually it is set within few seconds radiated by UV and
fully cured after a day; second, our molds are usually made out of thermoplastic and
thev can be destroyed by high temperature. But the huge drawback of optical glue is,
of course, its stickiness to the mold. There are mainly two kinds of optical glue - one
is MMA (SK-9) and the other is polyurethane (Norland optical glue). After many
trials by Ahmed Alsayed, we found it is least sticking to polyvethylene. Thus we make
a crossed grating on polyethylene slab (HDPE or LDPE) and use a crossed grating as
a mold to imprint onto a layer of optical glue a cover glass and crosslink the monomer
UV. Polyethylene is a very soft polymer with low glass temperature (60 — 80°). The
HDPE slab from McMaster Carr is actually full of tiny scratches and thus it takes
high temperature or longer time to anneal the scratched surface during the imprint. A
possible route to solve this problem is to dissolve high molecular weight polvethylene
in some volatile solvent such as chlorobenzene and spin coat the polymer laver onto
glass substrate like PMMA mold making. Fig. 3.4 shows a replica imprint from a
crossed grating mold. The template has patterns of pyramidal holes which look like

waffle and thus we call this a waffle template.
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Soft Imprint Scheme

crosslinkable liquid monomer

e Polymerize the monomer
2oy by UV or oxidization

Separate the mold
Separating

Figure 3.3: The schematics of soft imprint.



Figure 3.4: AFM scan of a waffle template.

3.4.2 The Wetting of Particles onto Substrates

Most of our analysis of the system has assume particle/substrate interactions are
hard-core potential. However, it is actually important in colloidal assembly. Fig. 3.5
(a) and (b) show different colloidal crystal structures on different substrates at the
same bulk concentrations of colloids/polymer mixtures. (a) is a clean glass surface
where colloids wet the substrate and therefore the colloidal crystal spread out on the
substrate. (b) is the optical glue where the colloids do not wet the substrate and the
crystal tend to form in the bulk instead of wide spread on the substrate. (c),(d).(e)
and (f) exhibit different surface densities of the colloids in the groove templates made
with different optical glues (NOAG61, SK9, NOA65 and NOA 72) under the same bulk

conditions.
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Figure 3.5: (a) a wide spread colloidal crystal formed on clean glass substrate where
colloidal fluid wet the substrate well. (b) A droplet like colloidal crystal formed on a
substrate made of optical glue (SK9). (c),(d),(e) and (f) show different surface density
of of colloids in the groove made of different optical glue (NOA61, SK9, NOA65 and
NOA 72) with the same bulk concentration.
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3.5 Chambers

There are many ways to make sample chambers that can be viewed under the mi-
croscope. The most common one is the parafilm chambers. The learning of parafilm
chamber making is one important syllabus of Yodh lab 101. The coverslips are at-
tached to the microscope slide by Parafilm strips cut into a ‘L’ shape, and arranged
so that they form a square with two channels left open for sample loading. The vol-
ume of the cavity is controlled by changing the width of the L's. A heating plate
was used to melt the Parafilm sealing the coverslip to the microscope slide. After
injecting the solution, the chamber is sealed with vacuum grease. When the chamber
is made properly. the sample inside can last for months. Parafilm chambers are good
for aqueous samples but dissolve in organic solvents.

For organic sample “thin chambers”, I cut stripes of No. 2 coverglass as spacers
(~ 0.2 mm) and glued them between coverglass and slides by optical glue. The
chamber were then sealed with 5 minute epoxy. 5 minute epoxy may dissolve in some
solvent, like tetrachloroethylene and cause gelation of the colloidal suspensions. It is
necessary not to have any contact between uncured epoxy and organic solvents. The
current chamber is made of a raschig ring (Fisher Scientific. part no.10-462-44, inner
diameter 10 mm) glued on coverglass. The chamber is sealed by a plastic testtube

cover and teflon septum insert.
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3.6 Optical Microscopy

The advance of optical microscopy has pushed forward the investigation at the mi-
cron and submicron level in a wide variety of disciplines. Rapid development of new
fluorescent labels has accelerated the expansion of fluorescence microscopy in labora-
tory application and research. Digital image processing with video has also enabled
quantitative measurements in real time. In this section, we discuss concepts in opti-
cal microscopy that are the essential instrument in our research. The main ideas are
crucial for the optical setup such as optical tweezers, and the confocal microscope.

In the simplest form of an optical microscope, it consists of two positive lenses, an
objective lens of small focal length that image the object and a magnifier functioning
as an eyepiece. In the most modern design of microscopes the manufacturers move to
infinity-corrected optics, i.e., the objective forms the intermediate image at infinity.
It requires another tube lens to form the real intermediate image before the evepiece.
The advantage of this design is that when extra optical components such as prisms
and polarizers are introduced into the system, there will be little distortion because
all the light from the specimen passing through the component is parallel.

The important concept in image formation was pointed by Ernest Abbe in 1870
— “a microscopic image are the consequence of interference of the direct light from
the light source with the diffracted light from the specimen structure.” This idea

is illustrated in Fig. 3.6. Suppose the light source is point-like at infinity and is
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Figure 3.6: The image formation through a lens.

collimated by condenser a plane wave travels through the specimen. Some light is
diffracted by the sample and some is not. In the back focal plane (BFP), the so-called
primary image of light source is formed in the center of light path. The diffracted and
undiffracted light keep travelling and interfere to form the intermediate image. The
image formed in a microscope have interfered twice. Light in the BFP is the spatial
Fourier transform of the front focal plane of the lens. Modulation of the light on this
Fourier plane enable contrast enhancing of the images. It facilitates the invention of
phase contrast microscopy which won F. Zernike the Nobel prize in 1953. Usually
an object which differs slightly from the surrounding in index of refraction is hard to

observe due to low absorption contrast. In phase contrast microscopy, a quarter wave
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phase ring is placed in the back focal plane to increase the phase of undiffracted light
by m/2. As a result, the interference between the zeroth order light and diffracted
light in enhanced. A visible amplitude image has been produced. Moreover, changing
the incident light angle in the BFP enables the manipulation of output light position
in the image plane. This is useful in designing scanning optical instruments - such
as scanning optical tweezers and the confocal microscope.

In optics two planes are called conjugate planes when points on one plane are
focused onto the other plane through lens and vice versa. In the proper alignment
of an optical microscope there are two most important sets of conjugate planes -
image and aperture planes, as shown in Figure 3.7. The image planes include field
diaphragm. specimen plane, intermediate image plane and retina. Eric Weeks. In
this section. we review the method of calibration.

Because a lot of our measurements are directly from the images. it is essential to
calibrate the pixel size carefully. For a precise calibration of x and y. I use optical
grating as a calibration standard. It is shown in Fig. 3.8 Image 3.8 a is taken by
confocal microscope without excitation filter. The effect of scratches and roughening
is evened out by averaging over the intensity along y axis. The average intensity
profile is shown in Fig. 3.8b and the positions of the peak are located. In Fig. 3.8¢c
shows the fitting of positions of peaks to the index number of peaks and the slope

gives the corresponding pixels to the grating pitch. Generally there are 40-60 peaks
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Figure 3.7: Two sets of conjugate planes: (a) image planes (b) aperture planes. The
figure is reproduced from Introduction to Optics by F. L. Pedrotti and L. S. Pedrotti.
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and therefore the precision of measurement can be improved by ~ 50x. Repeat the
same procedure in the y direction. It is often that there is 1 — 2% difference in x and v
spacing. It is interesting to note that the image is not flat in the confocal calibration
image as there is slight nonlinearity in the peak spacing shown in Fig. 3.8¢c.

For z scale, the piezo-stage should be well calibrated from the company. The
index of refraction of solvent will change the z scale by 1.518 (immersion oil)/nsoivent
to the first order approximation. We performed z calibration. Our strategy is by
measuring the spacing of colloidal crystals. We used the colloidal crystals of charged
PMMA fluorescent particles dispersed in known index solvent and almost density
matched. The charged colloids form nice hexagonal close packed crystals from glass
substrate. We take crystal image cube of 10-20 layers deep with 0.15 um spacing in
z. The interparticle separation d in xy plane can be measured precisely. The layer
spacing along in z axis should be \/% d. From our measurement. the z spacing value
is within 5% error from the factory piezo calibration value. It may be desirable to

sacrifice the spacing in z between different planes in order to have more layers taken.

3.7 Optical Tweezers and Interaction Measurements

In 1986 Ashkin showed that a highly focused laser light can be used to trap a dielectric
particle by the optical gradient force [106). This optical force trap is called laser

tweezers and is widely used in colloidal science to manipulate particles. One important
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application pf tweezers has for measurement of interactions between colloidal particles
[107. 108, 109]. The optical tweezers can confine particle in space and allow fast
feedback control.

There are several kinds of interaction measurements. One conceptually simple
approach employs the direct visualization by determining the equilibrium pair corre-
lation function g(r) of spheres in a dilute suspension and infers the pair interaction
potential from Eq. 2.29 [110, 111, 112]. It is however difficult to determine out-of-
focus particle positions and to have good statistics in dilute concentration. Digital
video microscopy has been advanced to determine the centroids of the particles with
sub-pixel resolution [113]. There are a few other detection techniques which achieves
nanometer resolutions such as total internal reflection applied in interaction measure-
ment (114, 115]. There are also more traditional routes to measure the interaction
by force measurement instruments such as surface force apparatus and atomic force
microscope [116, 117].

Besides using optical force, magnetic force is another common way to manipulate
colloidal particles with high magnetic susceptibility. There has been magnetic tweez-
ers built to measure the elasticity of a DNA molecules [118] or to use the knowledge

on magnetic force interaction[119, 120].
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3.7.1 Optical Line Scanned Tweezers

A detailed and extensive discussion on optical line scanned tweezers can be found in in
Ritu Verma's thesis [121]. Here we will summarize the basic idea of the measurements
and gives some supplementary discussion on line tweezers.

Our measurements were performed with a line-scanned optical tweezer (50 mW.
A = 1053 nm. NA=1.3)[122]. Fig. 3.9 shows the schematic of the setup. Briefly,
the two silica spheres were trapped in a one-dimensional optical potential generated
by scanning a tightly focused laser beam back and forth along a line at 180Hz. The
line trap was focused more than 4 ym away from the sample chamber’s coverglass
to minimize possible wall effects. The two spheres in the trap shared a roughly
harmonic potential along the scan direction and were strongly confined in the other
two dimensions. For each potential measurement, the spheres’ thermal motion was
followed by bright-field video microscopy and recorded on a S-V'HS deck for an hour:
subsequent digitization yielded 2 x 10° images. Center-to-center separations were
estimated by the in-plane distance between the sphere images’ brightness-weighted
centroids [113]. We employ an algorithm which largely corrects for overlap of the
spheres’ diffraction blurred images [122].

The interparticle potential U(h) was calculated from the measured probability
distribution of sphere contact separations, P(h), using the Boltzmann relation P(h) ~

exp(—U(h)/kgT). We made one measurement with rods and another without rods
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Figure 3.9: The schematic of an optical line scanned tweezer. A galvo mirror is placed
in a conjugate plane of the back focal plane of the microscope. The oscillation of the
galvo mirror control the translational scan of a laser tweezer in the image plane which
produce a time-average 1D optical potential.

under the same optical and chemical conditions; this enabled us to isolate the potential
due to the rods from other contributions. To quantitatively compare the observed
data with a model potential, we first convert the model to a probability distribution.
P(h). numerically convolve it with a Gaussian kernel to simulate our instrumental
resolution, and then convert it back to a potential by taking the logarithm. The P(h)
distributions for hard sphere-like control measurements were well fit by a step edge
convolved by a Gaussian with a 30 nm half-width. We use that value for the blurring
kernel in all model comparisons. The energy resolution of 0.05 kgT is set by counting
statistics.

The shape optical potential is controlled by the scanning of galvo and is in the



83

quadratic forms. The harmonic optical potential increases the probability of parti-
cles in the close contact of interaction range. Also a quadratic potential between
two particles can be expressed in the new variables, the relative separation between
particles and the sum of two positions. The depletion potential measurement is a
differential measurement. There is potential between particles contributed by the

optical tweezers.

1 1
Ubufter (21, I3) = 5 kl‘% + 5’933 (3.3)

where |z;, — 73] > 2a. The total potential with the depletants such as fd solutions is
1 2. 1, 5
de(-rls 12) = 5 k-'L'l + 5 k.’L‘2 + Uentropm(h) (3-4)

where h = |z, — £, — 2a| > 0. The entropic interaction only depends on the relative
separation of two particles and is the difference between Eq. 3.3 and Eq. 3.4. It is
sufficient to extract relative particle distance r = |z; — 13| = h + 2a from the data

because Upuger(Z1, Z2) can be rewritten as
1, 2,1 2
Ubufter == Z k R® + Z k (h + 20.) (35)

where R = x| + r5. Thus the measurement in “buffer” gives the second term in Eq.
3.5. We can remove that term contributed by the optical potential from 3.4 by fitting
the buffer measurement with a parabolic with the minimum at h = 2a and derive Uy
as shown in Fig. 3.10.

The potential is measured from the histogram of particle separation and there is
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Figure 3.10: (a) the solid line represents the raw potential measured with fd virus and
the open circle represents the raw potential measured in a pure buffer. The dashed
line is the parabola fit to the raw buffer potential. (b) shows the fd depletion potential
after subtracting the parabolic fit from the measured potential.
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Figure 3.11: Comparing the blurred depletion potential with the subtractions of
blurred optical potential from the blurred combined potential. The top lines are with
o = 0.03 and the bottom ones are with o = 0.06. When o is small. the two cases are
almost indistinguishable.

a limit in spatial resolution. The hard sphere repulsion potential appears “softened”.

This effect would make the decoupling of two independent potentials difficult if the

spatial resolution is low. The distribution function of separation is.

oc . U . ! N YAV
P(h) = /;oo dh' exp — [Uoptlcd(h )k:][{emroplc(h )} exp — l:(_}f__;o_il)_} X (36)
(h=h')?

Only when o — 0. the blur function (2r/0?)/2e”™ 2% — §(h — h'), the loga-
rithm of probability distribution function is truly a linear combination of two different
potentials. When o is small. it is still quite a good approximation but there will af-
fect the potential a little as shown in Fig. 3.11. The effect causes bigger error in the
potential near contact.

There is other effect due to the optical tweezers through scanning. When the
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laser beam scans through the particle, it brings particle back to the focus point but
also drags the particle along the scanning direction as if the laser tweezers “kick”
the particle. A laser trap exert force KAz on a particle where k is the optical spring
constant depending on the strength of the trap and Az is the deviation of the center
of particle from the center of the trap. Typically for 50 mW laser, 1 micron beads,
k is 0.1 pN/nm and thus the tweezers exerts at maximum 50 pN on the particle.
The viscous force from water is actually big. F = 67n2av. At the scanning rate -
20 micron amplitude at 180 Hz, it requires about 160 pN for particle to follow the
trap. Therefore, the force not strong enough to move particles significantly. The
sampling frame rate is at 60 Hz. In a single frame, laser has scanned back and forth
three times. The kicking effect is effectively “average” out. The kicking fluctuation
is uncorrelated from the “potential fluctuation”. In our measurement, we have about
30 nm resolution. a "dead-zone” which could be either from centroid measurement

error or kicking.

3.8 fd Bacteriophage

The rod shaped virus particles fd. m13 and pfl are unique experimental systems.
They are identical in structure which gives rise to the same length, diameter and
charge density. Currently no synthetic colloidal rod system can achieve this high

degree of monodispersity. The bacteriophage fd is long and thin with contour length
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Figure 3.12: The fd bacteriophage particle. a. The top is an electon micrograph of
fd virus. b. The bottom is a schematic representation of the phage particle showing
the location of the capsid proteins. The figure is adapted from [3].

L = 880 nm and diameter D = 6.6 nm and it is flexible with a persistence length
(previous reported in [123]) of ¢, = 2200 nm. The electron micrograph shows a bent
fd in figure 3.12A. fd is composed of five proteins shown in Figure 3.12B. The major
coat protein (1IFD) has helical structure. It compose a hollow cylinder filled with
the single stranded DNA. The carboxylated group end of the major coat protein is
exposed and gives rise to a high charge density. One end of the minor coat protein
(1G3P) contains four positive lysine residues. It comprises the knob to infect E. coli..
The other end of the minor coat protein is hydrophobic. The molecular weight of fd
is 1.64 x 107 dalton and the optical density is 3.84 (for concentration 1 mg/ml at 1

cm optical path, wavelength = 269 nm).
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3.8.1 fd Production and Purification

Recipes of fd growth are described in a number of papers [124]. We follow the pro-
tocol from Malik et al. [3] to grow and purify fd. fd are bacteriophages that infect
Escherichia coli. A detailed protocol of making 4 liter bacteria growth is as follows:

When working with E. coli, one should take steps to prevent contamination on
bacteria such as clean the bench surface with ethanol, and burning the neck of flask
when it’s open. This prevents unwanted bacteria growth in E. coli. broth. E. coli.
are stored at -70 degree. When it is taken out of freezer, it should be kept in a dry
ice bucket.

Day 1. A tiny amount of frozen E. coli is extracted onto the agar dish by a pipette
tip and spread by a platinum loop. Two dishes are made and left in the 37 degree
incubator overnight. We prepare 5 liter YT broth (yeast extract and tryptone from
Life Science) in 1L flasks for the next day and autoclave them.

Day 2. We infect 5 batches of 3 ml YT medium with one plaque of fd and place
them in the shaker for 6 hours at 37°, 300 RPM. At this stage, we mixed the E-coli
with some glycerin (15%) to make the stock and froze it quickly. (The glycerin is
autoclave with the small glass vial before time.) We pour these 3 ml E. coli. broth
into 50 ml broth in a 250 ml flask (Make 5) and leave them in the shaker at 37 degree
at 300 RPM overnight.

Day 3. 5 flasks of 1 L YT medium were infected with this 50 ml overnight growth
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batch and placed in the shaker for another hour. The optical density (OD) of medium
should be between 0.35-0.45 at 660 nm. The E. coli. broth is readily infected by 1
ml fd per batch and is allowed to grow overnight.

Day 4. The broth is now filled with fd and E. coli. The solution is centrifuged at
6000 RPM for 20 minutes in the rotor GS-3 where the centrifuge bottle is filled to
three quaters. This step allows to separate the E. coli body and fd. We collect the
supernant which is full of fd in one or two big flask. Each liter of supernant is added
with 40 g of PEG (mw. 8000) and 30 g of NaCl and left overnight at 4°().

Day 5. We run all of fd/PEG/NaCl broth through the centrifuge in 150 (200ml)
bottle in rotor NO. SLA 1500, 13K RPM for 20 min and remove supernant quickly
to avoid redisperse fd. We collect pellets of fd virus . At this step, fd are strongly
aggregated in the bottom of bottle. We squirt them off from the bottle wall in a
gentle fashion by a plastic pipette with TE buffer 5. We add 25% volume of 20%
PEG (mw. 8000) with 2.5 M NaCl to the supernant. The virus will be precipitated
almost immediately but store the suspension in the refrigerator for at least one hour
or overnight.

Day 6. The virus solution is spinned for 1 hour at 10,000 RPM (19900 g) in Ti42.1
rotor. We trash supernant immediately by inverting the tube in the upside down for

one minute and redisperse fd again in 10 ml pH 8 TE buffer per tube. (5 tubes) wait

STE buffer (pH 8.0): 10 ml of 1M Tris (pH 8.0) 2 ml of 0.5 M EDTA dilute to a final volume of
1 L with Millipore water.
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over night.

Day 7. (Gradient) We dilute the original solution to the final concentration be-
tween 0.5 - 1 mg/ml. The O.D. for fd at 269 nm is 3.86. CsCl is added at 0.5 g /
ml amount. (Wear gloves to handle CsCl which is neural toxic.) We centrifuge the
whole fd/CsCl suspension at 40,000 RPM in swinging rotor SW50.1 for 30 hrs.

Day 8. After the gradient centrifuge, the virus will appear as a blue translucent
band at a level about 1/3 from the top of the tube. We collecting all the bands into
a dialysis tubing (12,000-14,000 Mw) and dialyze against 0.5 M NaCl (116.88 g per
4L) and the desired buffer (e.g. 5mM sodium borate) for at least twelve hours for
three changes.

Final: Concentrate fd by spinning at 50,000 rpm in the SW50 rotor for two hours.

To determine the final yield of the phage, we dilute the phage at least 20 times
and scan sample by light with wavelength from 200 to 400 nm. The spectrum should
peak at 269 nm and the A559/A2s0 ratio should be approximately 1.1.

Fd can last for a long time if not drying out. It should be stored in the buffer at
4 °. The buffer can be TE or Sodium Borate at pH 8. When the sample is left too
long and impurity grows inside, you may centrifuge at lower speed to sediment the
impurity or perform a gradient again with enough fd quantity (> 0.5 ml). fd can be
broken by strong shearing. therefore, It should be pipetted in a gentle fashion and

never vortexed, instead stirred to mix by pipette instead.
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3.9 Physical Dimensions of filamentous bacteriophage

The literature contour length of fd are consistently ranging from 850 — 920 nm by
various methods [125]. There are quite a few experiments to determine the persistence
length and contour length. We summarize the different approaches in the following

section.

3.9.1 Electron Microscopy

The high resolution electron microscopy (EM) allows one people to look at biopoly-
mers such as DNA and filamentous bacteriophage. The images reveal the physical
properties of biopolymer such as dimensions and the flexibility by measuring the
contour length L and the end-to-end distance R. For a 2D system, the relationship

between R. L and the persistence length ¢, is.

(R®)=="-5(1- (3.7)

where A = 1/¢,. Persistence length is a mathematical definition by the correlation
of tangent vector along the polymer while ), the bending energy has more physical
meaning. Maeda and Fujime (MF) [126] analyzed about 900 fd’s EM images and de-
termined L = 885 + 30nm and ¢, = 1.95 + 0.2 um. Beck and Duenki [127] examined
M13, a close relative of fd. under EM by two different sample preparation methods
- spraying and sandwiching which yielded two distinct results. They determined the

contour length 918 + 25 nm. One is to spray the droplet with virus onto the grids
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and the contour length has binomial distribution and the mean end-to-end distance
is 766 nm and the most probable end-to-end distance is 850 nm. The other method
is by sandwiching the sample droplet between two mica-chips. The samples often
exhibited short rod-like particles, rather different in length. The mean end-to-end
distance was R = 862nm and the most probable R was 900nm. They determined
€, = 0.49 um (spray) and ¢, = 3.33 um (sandwich) respectively and concluded that
sandwiching method was more reliable since the result agreed with the light scatter-
ing result better. However, in 2D, A should be 1/¢, so the value of persistence length
should be doubled from their original value, ¢, = 0.98 um (spray) and ¢, = 6.66 um
(sandwich) . It is questionable that sandwiching is a better method since during the
drying process fd experienced very strong shear force which gives rise to the wide
range of contour length distribution and straighter looking. Jay Tang (private com-
munication) examined 68 M13 and measured R = 690nm and L = 800nm, suggesting
€, = 0.47 pm. In summary, the huge range of end-to-end separation from different
experiments indicates that EM is not a reliable method to measure the persistence
length. Moreover, this method is less reliable when the persistence length is long as
shown in Fig.3.13. For example, when R = 800 + 10 nm, ¢, = 1.25+0.2 um while the
contour length is L = 880+ 20 nm which will gives rise to R = 825+ 10 nm assuming
€, = 2.2 pm.

To determine persistence length more reliably by EM, it may be best to fit the
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distribution function of end-to-end distance [128]:

G(r)

_ K & (-t (j +1/4)? 2(j + 1/4)
- Ws/zNjgl 2751 [26(1 — r)J3/4 ex [_m] Dy [m] . (3.8)

where Dj)»(z) is a parabolic cylinder function, x is L/¢, and N is a normalization
factor. G(r) is calculated based on the distribution of end-to-end distance in 2D
equilibrium. If the sample agrees with the distribution function. it is less likely to
have artifact from the sample preparation. Moreover, the comparison to the distri-
bution function gives better accuracy especially because the distribution function is
highly asymmetric and sharply peaked. The other possibility is to AFM scanning on
adsorbed fd on substrate which can eliminate the problem of meniscus force during

drving out.

3.9.2 Dynamic Light Scattering

The other method to measure the persistence length of semiflexible polymers with-
out obvious artifact from sample preparation is to determine the dynamic structure
factor by light scattering. However, this method depends on the theoretical models
to interpret data. In 1977 Newman et al.[129] analyzed the intensity autocorrela-
tion function by the rigid rod model. They concluded the dimensions of fd virus to
L =890+ 20 nm and D = 9 £+ 1 nm assuming ¢, = co. In 1979, Loh et al. fit the

data with two exponential decays — “slow” and “fast” and attributed the fast decay
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Figure 3.13: Persistence length vs. End-to-End distance for a semiflexible polymer
with contour length 0.88 um. When the end-to-end distance becomes close to the
contour length, the persistence length increases exponentially.

to the bending mode of virus and interpreted the slow decay as rigid rods. They
showed L = 900 nm. In 1985 Maeda and Fujime (MF) not only performed EM on fd
virus but also light scattering measurement. They built a weakly bending rod model
by calculating perturbation of the rigid rod model. They determined the flexibil-
ity parameter AL = 0.23 with lower bound 0.13, upper bound 0.25 and the contour
length L = 895 + 40nm. In 1991 Song et. al.[130] conducted similar experiments
on m13. They concluded the persistence length of m13 virus between 1.5 — 2.0 um
with a different theoretical model. In Song’s paper, they pointed out few flaws in MF
model. MF considered the hydrodynamic of rods by employing isotropic, spherically

average Oseen tensor which may be inconsistent They also assumed that the trans-
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lational and rotational modes are not influenced by the bending modes. In Song’s
work, they employed the discrete bead model developed by Goldstein where all bead
motions associated with bending are constrained to occur in a plane perpendicular
to the end-to-end vector, thus prohibiting extension or contraction along the axis,
i.e. the end-to-end distance is constant while the contour length can vary. Both MF
and Goldstein's theories have the common assumptions and limitations. They both
restrict the subunit displacements due to the bending to be perpendicular to the end-
to-end vector (rod-axis) and for a short time that end-to-end vector (rod-axis) rotates
only slightly (v/2Dgrt < 1.0). They are only quantitatively valid for L/¢, < 0.6 [130].

It is difficult to develop a complete theory for the dynamical properties of a semi-
flexible rods [131]. The flexibility increases the diffusion coefficient D x R;' and
decreases the intrinsic viscosity [1] oc R3 as the flexibility increases. It also gives a re-
laxation in the high-frequency region. There are few recent theoretical models of the
dynamic structure function of semiflexible polymers which account for the inextensi-
bility of the polymer chain and hydrodynamic interactions {132, 133]. Based on both
models the structure factor due to structure relaxation obeys a stretched exponential
decay instead of single exponential decays of MF and Goldstein’s theories. The most
recent dynamic light scattering experiments performed by Augustin[134] confirmed
this and his results were compared with [132] theory and showed that the persistence

length of fd is smaller than the literature value without however giving the value.
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3.9.3 Isotropic and Cholesteric Transition

It is well known that rod-like molecules self-assemble into nematic and smetic phases.
For semi-flexible polymers they can still exhibit this variety of phases but the phase
transition point depends on flexibility. Khokhlov and Semenov (KS) first general-
ized Onsager’s theory to the systems of L >> D for arbitrary ¢, [135]. They solved
explicitly only in the limit L > P. In 1995 Chen reported an accurate numerical cal-
culation of the KS model for hard particles of arbitrary flexibility. Meanwhile, Tang
and Fraden measured the coexistence concentration of the isotropic and cholesteric
liquid crystalline phases of semi-flexible rod-like virus fd in aqueous suspension and
compared with Chen’s numerical solution [136] to KS theory. They measured the
ratio of isotropic to cholesteric coexistence concentration (p; o, w = ( po — p; )/pi- The
average w from the experiments is 0.099 which corresponds to A = 0.2 in Chen’s
theoretical model. However, in [136] Chen referred to the definition of A = L/¢, in-
stead of A\ = L/2¢,. Through private communication, the correct definition should be
A = L/2¢, and all the theory should be rescaled by factor of two. Therefore A = 0.4

which gives ¢, = 1.1 um instead of 2.2 um.

3.9.4 Summary on the Physical Dimensions of fd

There are also independent measurements on mass per length (18400 + 1400 dalton

nm~1) and the molecular weight of fd is 16.4 + 0.6 x 10° dalton. From here we can
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deduce the total length: 890 £+ 40 nm.

L (nm) £,(pm) R (nm) References Comments

890 20 oc 890 [129], [137)

885+30 22+02 825 [126] EM and DLS

805+20 22402 840 [130] DLS (M13 virus)

916 + 30 0.98 760 (127] EM (M13 virus) Spraying method
900 6.66 862 [127] EM (M13 virus) Sandwich method

Table 3.4: Summary of fd Persistence Length Measurement



Chapter 4

Colloidal Interaction in Rod-like Molecule solutions

In Chapter 2. we provided a theoretical background associated with the rod deple-
tion interaction. In Chapter 3 we described the experimental setup and the sam-
ple preparation. In this Chapter, we describe the first interaction potential energy
measurements between spheres in a suspension of monodisperse rod-like molecules,
specifically fd bacteriophage virus. We measure the potential of mean force between
two spheres as a function of rod concentration and the ratio. a/L, of sphere radius to
rod length. We compare our data to various theories [11, 19, 21, 138] and tested few
modified models. We find significant deviations from YJM models that we attribute
rod flexibility. We compare the data to the bent rod model which approximates the
semi-flexible rod into a bent rod at fixed angle.

The attractive depletion potential was unchanged over a relatively broad range of
salt concentrations. At high salt, however, we found qualitatively different repulsive

and harmonic potentials. These latter observations suggest that the ends of the fd

98
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virus can adhere to the particles, and can bridge between particles. Measurements on

the bridged case provide mechanical information about single macromolecular rods.

4.1 AO sphere, Derjaguin, and YJM models

From chapter 2, we derived the rod-induced depletion potential between spheres when

a > L. Eq. 2.10 can be written in terms of rod volume fraction ¢.i.e.,
2 La
Urea(h) = ~3 k8T ¢ 55 (1= h/L)". (4.1)

Here we have taken the diameter of the rod to be D [20]; hereafter we will refer to this
result as the Derjaguin model. This result contrasts with the well known Asakura
and Oosawa (AQO) depletion potential due to a dilute gas of smaller spheres Eq. 2.11

which we can also express in terms of sphere volume fraction o, i.e..
; a
Usphere(h) = —3kpT ¢, ; (1 - h'/op)2 (42)

where o is the small sphere diameter. In our case, the rods produce a depletion
interaction more than 1000x stronger than the same volume fraction of spherical
depletants [139].

In our experiments, we are also going to compare our results to the YJM model
(Eq. 2.16)

Uysm(h;a/L) = —kgTn.a L* K(h/L;a/L).
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Figure 4.1: Comparison of typical data with three different models - Derjaguin rod,
AQO sphere and YJM models.

The program provided by YJM computes K(k/L;a/L) numerically. We fit the nu-
merical data with a polynomial and multiplied the polynomial by the rod number
density n from optical density measurement, the squared length L2 and the particle
radius a to compare it to experimental data.

Fig. 4.1 shows a typical data set compared with Derjaguin (2.10). AO sphere
(2.11) and YJM (2.16) models . The circles are the experimental data for 1.0 um
diamecter silica particles in a dilute (0.7 mg/ml) solution of fd virus. The theory curves
are computed with no free parameters and then numerically blurred to account for
our instrument’s spatial resolution. The Derjaguin model has an attraction at contact

that is much too large. On the other hand, the YJM model has approximately the
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correct magnitude and shape. We will show below that the experimental deviations
from the YJM model are likely due to the entropy associated with rod flexibility.
We also plot the AO sphere model rescaled to have the correct depth, with L = o.
The volume fraction of spheres is more than 1000x higher than the real rod volume
fraction. The experimental potential curve is distinctly more curved than any of these

models.

4.2 Results and Modified YJM models

Fig. 4.2 displays the resulting potentials for all measured fd concentrations and two
different sizes of colloidal spheres. As expected, we see that for the same rod con-
centration. the depletion attraction is stronger between the larger pair of spheres.
Also shown in the figure (dotted curves) is the resolution-blurred YJM model with
exact input parameters (L = 880 nm and number density). The measured poten-
tial however. is more strongly curved and systematically weaker than the theoretical
model. We believe this discrepancy is due to rod flexibility. Even though the per-
sistence length ¢, = 2.2 um of the rods is much longer than their contour length of
880 nm, bending and undulations of the virus make them appear shorter on average.
The mean-squared end-to-end distance, (R?), is given by the Kratky-Porod (KP)
expression [131],

(R?) = 2Le, + 262 (e™4/% —1). (4.3)
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Figure 4.2: Interaction potential between pairs of (a) 1.0 um and (b) 1.6 um silica
spheres in a suspension of fd virus at varying concentration. The dotted (solid) line is
generated by the YJM model with L = 880 nm (L = 825 nm). Thc dashed linc is gen-

erated by YJM model with length distribution. This is essentially indistinguishable
from L = 825 nm model.
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For fd. the root-mean-squared end-to-end length is R = 0.825 um. We substitute
R for L in the YJM model yielding the solid curves in Fig. 4.2. The rod-bending
modified YJM curves (YJM-KP) provide better agreement at large separations, but
they are generally deeper than the experimental curve. At the closer separation, the
experimental data are deeper than the model predictions.

The agreement of the KP-modified Yaman model and our data at further separa-
tion lead us to consider the actual end-to-end distance distribution, 47r2G(r), of the
rods because a polydisperse rod suspension can have a more strongly curved depletion
potential. Wilhelm and Frey [128] have determined an accurate analvtic form for the

end-to-end distance probability density of semi-flexible rods:

PR 1 (j - 1/2)2} j—1/2
G(r) = ,, ex [— H, 1.4)
SN L R T | T ]
where Hy(zr) = 4x° — 2 is the second Hermite polynomial, A is a normalization

factor. k = I,/L, 7 is the end-to-end distance normalized by the contour length L.
The distribution function is shown in Fig. 4.3.
We computed a new depletion potential by numerically superposing YJM models

(Eq.2.16) with different L = R, weighted by 477r2G(r), i.e..

JEdR4TR? Uym(h/R; R/a) G(R/L)

JL dr4xR2G(R/L) (4.5)

UyiMm-wr =
We did this numerically by choosing 100 points of R. we calculated Uyjy by inter-

polating pre-calculated potentials with R/a = 0.1,0.2,...,1.0 and scaled to R corre-
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Figure 4.3: Probability distribution of fd end-to-end distance.

spondingly. The results (dashed line, YJM-WF) were barely distinguishable from the
Y JM-KP model. suggesting that the distribution of effective lengths does not explain
the entropic discrepancy at short separation. Similar calculations demonstrated the
data could not be explained by a fraction of the virus having broken during storage
and handling.

We also compared YJM models with shorter length L = 740, 760. and 780 nm
with experimental data (Fig.4.4). They all showed better agreement at further sepa-
ration. The deviation between data and model generally occurs around separations
h ~ 0.2um. The repeatable discrepancy at small h reveals entropic contributions from
another degree of freedom in the system illustrated in Fig. 4.5. Flexible rods undulate

in thermal equilibrium, and entropy is associated with these degrees of freedom. For
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example, the bent rods have more rotational degrees of freedom than straight rods:
bent rods explore physically distinguishable configurations when they rotate about
the axis connecting their ends. These effects become significant only when the sphere
surface separation is less than the typical transverse extent, W, of the rods. The
relative increase of suspension entropy for closely separated spheres is thus greater
for flexible rods than for rigid rods with equivalent end-to-end length. To estimate
1. we consider a rod bent into a circular arc with end-to-end separation 0.74 um and
0.78 um and contour length 0.88 um. W will be 0.22 um and 0.18 um respectively.
These are roughly the separation length-scale at which our experimental data deviate
from the YJM-KP model. We can rule out dispersion force effects [140] as a possible
mechanism: they are smaller, they would produce a deviation with the opposite sign,
and they do not predict a natural crossover around 0.2 um. Furthermore. the agree-
ment at large h demonstrated that the bent rod can be approximated as a straight
rod with shorter length at large length scale. The entropic force in this case originates
from the rotation about the rod center; therefore the interaction range should be the
same as end-to-end distance R. Our data suggests a smaller end-to-end distance than

the calculated value based on the literature values ! and ¢,,.
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Figure 4.5: (a) The depletion zone for a bent rod rotating around the center of mass.
(b) The depletion zone for a bent rod rotating around the end-to-end axis.
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4.2.1 Bent Rod Theory

In Section 2.5 we discussed the recent theoretical model [29] which included the short
range potential arising from the extra rotational degree of freedom. The model con-
sider the lowest bending mode of a semiflexible rod and approximate it as a bent rod
at fixed angle. The bent rod theory showed that two independent rotational move-
ments of rods contributed two distinct energy terms, thus confirming our conjecture.
In the bent rod theory the short range interaction between spheres were calculated
within the Derjaguin approximation and for the long range interaction we used the

exact solution from the YJM model. The combined YJM-L model is

U(h) = —kgTnaR? [K (ﬁ; 3) + L / “ dzT(z. a)] . (4.6)
R'R R? Jn

I'(h.a) is the short range depletion interaction from rotation about the end-to-end
axis of bent rods between two plates; the first term is the YJM model for a straight
rod solution with R = Lcosa. Fig. 4.6 compares a typical data set with three
different models - YJM, YIM-KP, and YJM-L with R = 740 nm. The YJM-L model
clearly gives best fit.

To determine the end-to-end separation of fd more precisely. we performed a x?
calculation of the YJM-L models for R between 720—825 nm and L between 880 —920
nm for all data sets. We compared the average of x? of the different concentration data

for different R and L (See Table 4.1 and 4.2). When we constrained the concentration

to the measured value, the YIJM-L model of L = 920 nm and R = 780 nm gave the
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Figure 4.6: Comparison of a typical data set with three different models.

smallest average x? value (Fig. 4.7). If we allow < 5% error in the concentration
! and x? is from the best fit, x? is the smallest for YJM-L model of L = 900 nm
and R = 740 nm (Fig. 4.8). From Eq. 4.3 we obtain an fd persistence length
¢, = 680 + 60 nm, contour length [ = 920 nm; from the fixed concentration analysis
and ¢, = 850 £ 100nm, contour length ! = 900 nm. The literature values of fd
[123] has contour length [ = 880 nm and persistence length ¢, = 2200 nm. The
persistence length based on our measurement is surprisingly 2 or 3 times smaller
than the literature value.

The YJM-L model explains our data very well. We should however make some

notes about the approximation. Only the lowest mode of a semiflexible rod which is

The best fit concentrations are consistently higher than measured quantity.
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720 740 760 780 800 825

880 2.75 227 263 275 3.99 10.05
900 248 2.18 241 278 340 6.30

920 3.66 2.42 232 327 4.05 7.44

Table 4.1: Average x? for different R and L with concentration as a adjustable pa-
rameter.

720 740 760 780 800 825

880 10.20 835 7.30 6.40 6.50 7.99
900 701 595 504 438 4.09 795

920 4.12 4.12 344 3.26 3.58 9.57

Table 4.2: Average x? for different R and L with fixed concentration as measured.
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the arc shape is considered (Fig. 4.9a). The approximation of a bent rod with fixed
angle exaggerates the transverse width W (Fig. 4.9b). The depletion interaction due
to semiflexible rods should exhibit more curved potential at smaller A than the fixed

bent rods.
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Interaction Potential, U/kgT
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Figure 4.7: Compare YJM-L theory of L = 920 nm and R = 780 nm with data at
given concentration.
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Interaction Potential, U/kgT
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Figure 4.8: Compare YJM-L theory of L = 900 nm and R = 740 nm with data with
tunable concentration.
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Figure 4.9: The bent rod approximation. (a) different bending mode of semiflexible
rods. (b) With the same R and L the bent rod transverse amplitude W" is larger
than the arc shape rod W generally by 10 — 20%.
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Figure 4.10: Depletion Attraction Potentials at Different Ionic Strength

4.3 Salt Concentration in Buffer

We next explored how variation of the effective rod diameter alters the depletion
potential. To this end, we changed the Debye screening length, k!, from 16 nm to 3
nm; which in turn modified the effective rod diameter D.g = D + 2x~!, changing the
ratio L/D of the rods. Specifically, we varied the NaCl concentration between 0 and
10 mM at constant 2 mM sodium borate and pH 8.0. Our measurements (Fig. 4.10)
found no change in the depletion attraction over this range of salt concentration, sug-
gesting that the thin rod approximation holds in our system. Moreover, this confirms
the electrostatic interactions between the spheres and the rods are insignificant in

this range.



115

4.4 Sticky Rods on the Spheres

At still higher salt concentrations (i.e. > 20 mM), the spheres in a pure buffer solution
become sticky and the sphere-sphere interaction in the rod solution changes dramat-
ically. becoming repulsive. We speculate this repulsion is due to the fd molecules
adhering (perhaps end-on) to the particle surfaces. The major coat protein along the
fd-cylinder is highly negatively charged, making adsorption there more difficult than
for the ends. The composition of the ends is different; one end of fd is the G3P minor
coat protein whose function is to grab the pili of E. coli, the other end is hydrophobic.

In Fig.4.11 (a) and (b) we illustrate the two types of repulsive interactions we
have observed—linear and harmonic. In Fig. 4.11(a) we exhibit two potentials. Both
decay in a linear fashion with increasing separation and have a range approximately
equal to the length of the virus, L. Although both of these potentials are repulsive
and have the same range, the force between the spheres is quite different in the two
cases. i.e. (x) 29.4 + 0.03 femtoNewton (fN) and (y) 5.9 + 0.04 fN respectively. One
explanation for this difference is that a different number of virus are bound to the
particles in each case. In Fig. 3(b) we observe a more harmonic interaction, which
we hypothesize is due to fd bridging between the spheres. The maximum separation
between the spheres was L and the potential minimum occurred at h = 0.57 um. For
h < 0.57 um, the potential is approximately linear as in Fig. 3a. For h > 0.57 um,

the potential is well fit by a quadratic form, giving a spring constant of 84 kgT/um?.
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Figure 4.11: x is derived from samples with 2mM Sodium Borate + 10 mM NaCl,
0.5 mg/ml fd and the two other potentials are derived from samples with 10mM TE
+ 20 mM NaCl, 0.2 mg/ml fd and (a) Steric repulsion between particles due to the
‘rod brush’. (b) Harmonic interaction potential due to bridging of fd between two
spheres.
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Understanding these harmonic interactions from the microscopic properties of the
rods will require further effort. Still, this methodology provides a new window into

the equilibrium mechanical properties of single macromolecular rods.

4.5 Measurement at Higher Concentration

The sphere depletion interaction has been used to probe the liquid structure of small
spheres around the big spheres [141]. The depletion interaction exhibits oscillatory
shape with repulsive peaks and attractive wells. In rod depletion interactions it was
first suggested [138] that a large repulsive barrier may occur in the intermediate-to-
high concentration to second order in perturbation theory. But when they considered
third order perturbations, the conclusion was quite different - there was no significant
energy barrier in the intermediate-to-high concentration.

We attempted to measure the interaction near and below the isotropic- cholesteric
(I/C) phase transition (~ 10 mg/ml). However, there are few problems. First. fd
increased the viscosity and index of refraction of the solution significantly. It was
harder to trap the particles in place in the same power and the change in index of
refraction makes the differential measurement less reliable. Second when it is below
the I-C transition point, the particles tend to stick together forever. For first crder
perturbation theory, the estimated contact potential at 6 mg/ml for 1 micron particles

is ~ 9kpT. This deep potential makes the time needed for measurements too long,
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Figure 4.12: Schematic drawing of spheres in nematic rod suspension: (a) The spheres
can be stabilized by one rod separation apart. (b) Strong attraction between spheres
due to strong surface tension of rods in parallel.

or causes the particle fall into the deep potential due van der Waal interaction. When
the concentration is in the cholesteric phase, we sometimes observed that particles
separated by about one micron and stabilize for a while before they stick together

permanently. The possible scenario is illustrated in Fig. 4.12.

4.6 Conclusion

We have presented the first measurements of interactions between particles in rod-like
suspensions. Our results are well approximated by the YJM-KP model [21], which
takes both sphere and rod curvature into account. The remaining deviations at
small separation are due to non-negligible contributions from the entropy of bent rod

conformations, which until our work have not been considered in the literature. The
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YJM-L model provides an excellent agreement with data and predicts a surprisingly
smaller £, than the literature value. Thus the depletion interaction measurement
provides an independent measurement on persistence length. There is no obvious
artifact from sample preparation and it does not require complicated theoretical model
for hvdrodvnamic interactions of a semi-flexible polymer. Our result suggests more
experiments should be carried out to re-examine the value of persistence length of
fd and also provides another way to check the statistical properties of semi-flexible
polymers.

We also observed steric repulsion and bridging effects at high salt conditions. In
total. these observations can be used to understand the phase behavior and stability
of these and related suspensions, and to gain insight into the mechanical behavior of

macromolecules.



Chapter 5

Entropically Driven Colloidal Crystallization on Patterned Surfaces

In this chapter we describe a novel colloidal system that enable us to two-dimensional
phase transitions and also provides a new approach for colloidal epitaxy based on
equilibrium thermodynamics and geometry.

We use patterned surfaces with spatially periodic 1D- and 2D-height profiles as
templates to nucleate the growth of two- and three-dimensional structures. Depletion
effects in suspensions of large and small particles of macromolecules produce forces
that push large spheres together [142], towards flat walls [143], and towards inner
corners on surfaces [144]. We use these forces to attract and repel colloidal spheres
from specific positions on the corrugated template.

We observed the formation of 1D, 2D, and 3D commensurate structures as a
function of sphere size and grating periodicity. OQur experiments complement recent
work on charged 2D colloidal phase transitions in a perturbing 1D optical potential

[69, 70, 74]. Our particle interactions are, however, short ranged, and are much

120
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weaker than the external template potentials. Our surface particle density is set by
its equilibrium at constant chemical potential with the bulk (3D) colloidal liquid. The
1D line grating creates a surface potential for the colloids that induced 2D structures.
all of which exhibit diffuse scattering peaks characteristic of 2D bond-angle ordered
phases in an aligning field rather than power-law peaks characteristic of 2D crystal
order. They thus correspond to the liquid phases of [70]. The 2D crossed grating,
surface potential induced both liquid- and solid-like structures. and provided the
optimum template for growth of a large, defect-free FCC crystal in 3D. Finally we
created a template of FCC(100) with lattice spacing d = 1.150 where o is the diameter
of hard sphere. The substrate induces an expanding FCC crystal at ~ 50% which
is below than bulk freezing point. As the system’s osmotic pressure increases, a
comensurate-incomensurate transition is observed. At very high osmotic pressure,

the system eventually turn into hexagonal close packed structures.

5.1 Depletion Interaction and Surface Structure

In chapter 2 we discussed the depletion interaction between two spheres. The same
attraction occurs between sphere and wall as shown in Fig 5.1. At contact, the over-
lapping excluded volume between the wall and sphere is almost twice as great as
the overlapping excluded volume between two spheres in contact. This explains why

crystal growth using depletion interaction normally occurs in the bulk suspension at
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Figure 5.1: (a) The hashed region represents the volume excluded to depletants. The
dark region is the overlapped excluded volume. In flat wall and corner geometries,
the overlapping excluded volumes are bigger than between spheres. (b) Colloids are
driven to the grating grooves due to depletion interaction.

the wall. especially. when the concentrations are chosen close to the phase boundary.
The dependence of depletion interaction energetics on large scale geometric structure
was systematically studied in Tony Dinsmore’s thesis. He showed that spheres pref-
erentially lined up along the corner on silicon substrates [144], are repelled from step
edges [145]. and are attracted to regions of higher curvature in walls [146]. He also
proposed that an array of 2D posts can be used as a template to crystallize particles
by depletion. We demonstrate the feasibility of this idea by positioning colloids using

various periodic surface topologies.
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5.2 Sample Preparation

To create the geometrical templates, we have employed the imprint technique dis-
cussed in chapter 3 using optical diffraction gratings.

The colloids consisted of 0.7 to 1.2 um diameter PMMA (polvmethylmethacrylate)
spheres stabilized by a grafted layer of poly-12-hydroxystearic acid. [86, 4]. In a
mixture of decalin and cycloheptyl-bromide, these spheres are nearly density matched
and have a refractive index mismatch of < 0.01 with respect to the solvent. Such
small index mismatches reduce light scattering, which facilitates optical microscopy
deep into the suspension. However, it also results in low imaging contrast in the
bright field. We used phase contrast and confocal microscopy to observe the resulting
2D and 3D structures, respectively. Both techniques are reviewed in chapter 3.

Depletion attraction was induced by adding polystyrene microspheres with R, =
15 nm (M, = 320000, Af,/M, = 1.04, Polymer Laboratories) to the suspension
of particles. The PMMA/PS mixture has been thoroughly investigated by Pusey's
group [4]. A typical bulk phase diagram is shown in Fig. 5.2. A fluid-solid phase
transition due to binary sphere depletion on a flat hard wall was investigated in
reference [5]. It was shown that the surface crvstal is best grown near the fluid-
solid coexistence line. In our experiments, we tuned the bulk concentration to just
below the fluid-solid coexistence region and adjusted the polymer concentration to

keep the free energy of the system fairly constant as we varied the spatial period p



Figure 5.2: (a) typical bulk phase diagram of spheres and polymer [4]. (b) The phases
on a flat surface with corresponding the bulk phases [5].

of the template and the sphere size. Two dimensional surface structures formed in
approximately one hour and evolved very slowly thereafter. The number density and
growth rate depended on bulk concentration of colloids and polymer. They exhibited
local density inhomogeneities and defects whose positions were quenched over the

lifetime of the experiments.

5.3 Line Grating Templates

The interplay between bulk particle volume fraction, ®, bulk polvmer concentration.
Cp. and mean nearest neighbor spacing, d, is most clearly exhibited by the 1D col-
loidal liquids that form in the grooves of the 1D grating template. The simplest case

arises when the spheres are large enough to fill the groove, but not large enough to
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Figure 5.3: Phase-contrast micrographs of four representative 2D structures with the
schematic reconstruction in the bottom left corner. The S(k) computed from these
images is shown in the top right corner. (A) Stripe phase. (B) Triangular phase. (C),
(D) Scissor (Centered-Rectangular) phases with different scissor angles as defined in
the structure function image of (C). In (C) we circle the mirror line of a twinning
defect. (E) Diagram indicating the observed phases as a function of x.
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interact with spheres in adjacent grooves. Our observations of self-assembled crystal
structures on the line gratings are displayed along with the corresponding structure
function, S(k), in Fig. 5.3. The 1D liquid phase (i.e. stripe phase) is shown in Fig.
5.3a. and its pair correlation function along the groove, g(r), is plotted in Fig. 5.4a
for three different combinations of & and Cp. We derived an approximate bulk phase-
diagram for this system based on [4] (see the inset of Fig. 5.3). At low volume fraction
® and low polymer concentration Cp(Y), the first peak position is significantly larger
than 2a. This suggests that there may be repulsive interaction between the spheres
since the first peak position should be the diameter of the sphere for a hard sphere
liquid. However, at low particle volume fraction, ®, and high polymer concentration
Cp(Z), the measured pair correlation function g(r) exhibited peaks whose positions
were asymmetric, like those of a classical hard-core gas [147]. Its magnitude, how-
ever. decayed more rapidly toward 1 at large r than the hard core gas shown in Fig.
5.4b. Thus the short-range depletion attraction may be the dominant interaction in
this case. At higher concentration ® and lower concentration Cp(X) the peak posi-
tions are comparable to Y, with slower decay at large r. However, the peak shape
is more symmetric. The structure function analysis shows that there is small cou-
pling between neighboring grooves caused either by coupling to defects or by coupling
colloidal particles in the bulk. At higher concentrations the mean nearest-neighbor

spacing, d. derived from the first peak in g(r), shifted to smaller values. The typical
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spacing was larger than the depletion interaction range, about 1.1 particle diameters.
These observations suggest that the surface density of spheres is determined by the
competition of the depletion attractions driving the spheres to the surface and the
osmotic pressure of the spheres already there.

When the sphere diameter increases relative to the spatial period of the grating p,
the 1D colloidal liquids in adjacent rows interact more strongly. The most important
parameter characterizing the 2D phase behavior is the commensurability ratio, x =
d/p., where d is derived from the pair correlation function along the groove. For
the phases in Fig. 5.3, ® = 0.25 is high enough to serve as a reservoir for surface
adsorption. Cp was set near the bulk fluid-crystal phase transition region (point
‘X" in Fig. 5.4). This choice ensured that bulk crystallization did not occur in our
thin sample chambers and that the spheres densely covered the template surface.
On flat substrates at the same concentration, the colloids formed isotropic liquid
structures. The line grating breaks the symmetry in one direction and the assembled
structures exhibit a range of two-dimensional patterns shown in Fig. 5.5. Generally,
the 2D colloidal structures on the line-grating surfaces do not exhibit very long range
translational order along the groove direction. Point defects and dislocations are
common, as are twinning pianes perpendicular to the groove direction (see Fig. 5.3C).

When the sphere size is bigger than the groove pitch, more particles can be packed

onto the grooves through the interlacing of spheres in different grooves. For 1 < x <
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Figure 5.4: (a) 1D pair correlation function along the groove direction for colloidal
spheres in the stripe phase (2a= 0.86 pum, p= 1.21 um, see Fig. 5.3a ). For curve
X. the first peak of g(r) occurs at r = 0.93um. The inset is the approximate bulk
phase diagram scaled from [4] for this system as a function of ® and Cp. (b) The
comparison of g(r) (dashed-line) of Z to the exact 1D hard-sphere correlation function
(solid-line).
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On a flat surface

Structure function

Structure function

Figure 5.5: At the bulk same concentration, the structure on the flat surface and on
a line grating template.
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Figure 5.6: Bond orientation order of the triangular phases.
2/v/3 = 1.15 (see Fig. 5.3b), the spheres can have nearest neighbors along the same
groove and in the neighboring grooves. Hexagonally symmetric crystals emerge. As
Y increases towards 1.15, this structure becomes more ordered. Fig. 5.6a shows the
Delauney triangulation with disclination neighbors shaded. The defects are usuallv
connected to each other which shows long range orientation order.

For 1.15 < x < 2v/3 = 3.46, the ordered structure is maintained while hexag-
onal symmetry gives way to crystals with centered rectangular unit cells (see Figs.
5.3c.d). Two dimensional phases with centered rectangular symmetry have not been
previously observed [69, 70]. We define the scissor angle, 6, as the angle between
the grating groove direction and the crystal lattice vector (see Fig. 5.3C), and refer

to the centered rectangular phase as the scissor phase. Using the geometric relation
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tan @ = 2p/d, we again find the mean nearest neighbor spacing is =~ 10% bigger than
the sphere diameter. A peculiar kind of defect twinning is often observed in this phase
after a long time (See Fig. 5.3c and its inset).

To better understand the nature of these phases, we examined the shape of the
peaks in the structure function, S(k). It exhibits resolution-limited Bragg peaks,
arising from the periodic template, at k, = 0 and k; = nG,, where G, = 2n/p
and n is an integer, and diffuse peaks along the lines k, = mG, with m an integer,
where G, = 27/d, reflecting correlations within and between grooves. Fig. 5.7 shows
the structure function for different phases. The diffuse peaks become sharper in the
scissor phase. The intensities as a function of k. at k, = mG, are well-described for
all m # 0 and x by

ApekEWn

Sm(k::) = 1+C, cos(kIp) + By, (5.1)

which exhibits Lorentzian peaks of width 2(1 — [Cp|)/p?|Cn] at k. equal to odd
multiples of G;/2 for C,;, > 0 and to even multiples of G./2 for C,, < 0. This is the
scattering function for a model system in which a 1D liquid in each groove interacts
weakly with the 1D liquids in its nearest-neighbor grooves. Within this model, W,, is a
Debye-Waller factor arising from uncorrelated motion of spheres perpendicular to the
grooves, C, is proportional to the product of interparticle potential at wavenumber

ky = mG, and the structure factor S;p(mG,) of the spheres along an isolated groove,
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S(k) ¢

Figure 5.7: The structure function S(k) plotted in the xy plane for three different
phases (a) stripe, (b) hexagonal and (c) scissor.
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A is an amplitude proportional to S;p(mGy,), and B, is a background. In the stripe
phase, there is short-range simple rectangular order (see Fig.2A), and S, (k) exhibits
diffuse peaks at k; = nG, for m = 1 and m = 2 described by Eq. (5.1) with C,,, <0,
corresponding to attractive interactions between spheres in neighboring grooves. The
ratio C,/C; is equal within experimental error to S,p(Gy)/S1p(2G,) determined by
direct measurement of the 1D structure function of a line, in agreement with the model
of weakly interacting 1D liquids. As the density is increased, centered rectangular (or
hexagonal) correlations become more pronounced, and the structure function peaks
become those of a centered rectangular reciprocal lattice at k; = (n + é)GI for m
odd and k; = nG, for m even. We observed this effect in the scissor and hexagonal
phases, whose structure functions are well-described by Eq. (5.1) (even though the
inter-groove coupling is no longer weak) with C,, > 0 for m odd and C,, < 0 for m
even. A similar structure function results when unbound or quenched dislocations
convert the power-law Bragg peaks of the “locked floating solid” phase of Ref. [74]
to Lorentzian peaks in the liquid phase. In our experiments, W, was approximately
constant, and |C,,| decreased with increasing m in all phases. The decay of |Cy,| was

slower in the scissor phase than in the hexagonal phase.
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Figure 5.8: S(k) for the centered rectangular phase shown in Fig. 5.3C. The peak
positions are indicated in the inset. The x’s indicate delta-function Bragg peaks
and circles indicate Lorentzian-like peaks. The grooves are aligned parallel to the
Y-axis. and plot S(k) vs k., at four different values of k,. The topmost row shows
the Bragg-peaks (i.e., at k, = 0) scaled 50 x smaller. For non-zero k,, the curves are
well modeled by Eq. 3.1 (solid curves).
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Figure 5.9: (a). (b) and (d) illustrate 2D colloidal assembly commensurate with the
cross grating template Notice that the crystal orientation rotates by 45 degrees for
x = 0.71. 1.41, and that different crystal domains are clearly seen in (c). The domain
size in (b) is greater than the microscope field of view which is 60 um x 80 um. (c)
shows the disorder structure when y is far away from the commensurate value.
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5.4 Crossed Gratings

The crossed gratings impose a 2D surface potential on the colloidal suspensions. Since
the crossed-gratings have two-dimensional square symmetry. we expect the assembled
structures to have this symmetry. All the ordered patterns have square symmetry, but
with different lattice constants and orientation. (See Fig. 5.9). Here d = 1/,/0. where
o is the particle surface density. When x ~ 1/v/2 ~ 0.71. a commensurate overlay
FCC(100) 1/v2x1/v/2 45° was formed. When y ~ 1, commensurate structures with
FCC(100) 1 x 1 pattern were formed, and finally for x =~ /2 = 1.41, a commensurate.
rotated square structure formed, i.e. FCC(100) v2 x v/2 45°. In the latter case large
domains did not arise because two possible nucleation sites exist on the template and
produce different lattices, corresponding to lattices built on either the black or the
white squares of a checker board. When d was commensurate with the pitch at the
ratios. 0.71. 1. and 1.41, larger crystal domains with fewer defects formed.

The structure functions for crossed-grating phases had both solid- and liquid-
like features. Each phase exhibited Bragg-like peaks on the reciprocal lattice of the
template potential along with a ring-like background and diffuse peaks characteristic
of a liquid or residual sample disorder. Generally the diffuse peaks were narrower than
the corresponding peaks in the 1D potential. When x deviates from the commensurate

values. the liquid-like ring becomes more pronounced.
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5.5 3D assembly

A crossed grating commensurate with the FCC(100) plane (x = 1) was used to grow
an FCC crvstal without stacking defects. With some density mismatching (e.g. 0.3
g/cm? difference). the growth process was enhanced by a gravity-induced increase
in sphere concentration near the surface. The spheres then cryvstallized faster and
grew more than 30 layers. In contrast to previous sedimentation-based assembly [96],
control experiments without polymer did not produce large ordered colloidal crystals
(Fig. 5.10b and c) probably because the energy difference between the top and the
bottom of the groove is only 0.2 kgT (3x less than [96] and 20x less than with the
depletion effect). Nevertheless after > 24 hours a few lavers of crystal nucleated.
We employed a 2D bond orientation parameter ¢, to analyze the defect structure
laver by layver. In the square cell, it is best to use a voronoi diagram instead of
triangulation (see Fig. 5.11a). We only include the long edges of voronoi cell which
divide the particle from the nearest neighbors. The most common defect is a void
with the characteristic shape of a cross composed of 4 pentagons in the voronoi cell

analysis.

5.6 Expanded FCC(100) Lattice

With the waffle templates, it is possible to study crystallization on a square lattice

template with small x. While on crossed grating of small x, liquid-like structure is
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(c) DIC

(b).
(d), (e) and (f)

(a) fluorescent picture of a crossed grating template.
pictures of particles sediments on the template within few hours.

particles sediments with polymer added.

Figure 5.10:
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Figure 5.11: (a) The solid lines show a voronoi diagram of square lattice with a
void. The shaded pentagon indicates a vononoi cell with a missing lattice point. The
dashed lines show Delauney triangulation. In the bottom right it shows that either
bond 1 or 2 are allowed because they are the same length. Voronoi diagram gives no
ambiguity in the square lattice analysis. (b) and (c) are the voronoi diagram from
the fcc crystal data with shaded region as defects identified by ®,.
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more pronounced because colloids can move freely along the grooves on a crossed-
grating while colloids nucleate into a monolayer of crystal commensurate with waffle
template lattice of small x. One of the original goals is to create open structures such
as a BCC crystal of hard-sphere-like particles. We designed a template with y = 1.13
(shown in Fig. 5.12).

For our studies. we varied the buoyancy density, volume fraction. and depletion
interaction and watched the sample to evolve with time. We observed three stages of
crystal structure: (I) commensurate crystals, (II) incommensurate crystals. and (III)
random hexagonal packed crystals (see Fig. 5.13). In the commensurate phase (I),
the particles register to the template lattice well to the high laver. Fig. 5.14) shows
the coordinates of all particles in a commensurate crystal of 24 layers projected onto
xy and xz plane. The projected particle positions maintain well periodic positions of
a crystal . The area distribution of voronoi cells in each layer are almost the same
and the average bond orientation order parameter ¥, for each layver is between 0.7-
0.8. In the incommensurate phase (II}, crystals with domain boundaries are observed.
The particles lose registration from the template. In the plots of projected coordinate
(Fig. 5.15). there are regions exhibiting particles more scattered from a crystal lattice
because of domain boundary. There should be misfit dislocation line introduced in the
system and more work is required to identify this type of defect. In the stage (III) of

random hexagonal packed crystal, the structure above the template not only lose the
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spacing registration to the substrate but also lose the orientational symmetry. The
colloids turn into hexagonal packed in each plane. There is a small laver of disordered
structure from square substrate layer to the hexgoanl plane bulk structure.

We first observed effects due to different buoyancy mismatch (Ap) in the short
time. When Ap = 0.9 g/cc with corresponding gravitational length (¢, ~ 0.8um). the
colloids assemble into random hexagonal packed crystals as in stage III (Fig. 5.16).
When Ap = 0.2 g/cc (¢ ~ 3.5um), the colloids initially assemble to commensurate
crystals as in stage II. When Ap = 0.44 g/cc(¢, ~ 1.6pm). the colloids may go to
incommensurate phase (stage II) without going through stage I .

We then observed different initial volume fractions of 0.1 %. 1%, 2% and 10%
at Ap = 0.2 g/cc. They exhibit similiar behaviors of evolving from stage I to III
with different time scale for system evolution. The system evolves faster at higher
initial volume fraction. In the beginning there are commensurate crystals grown on
the template. Then they turn into incommensurate structures. At the end they all
evolve to hexagonal packed crystals.

Even though the system is not in truly equilibrium, there is no well defined overall
osmotic pressure for the whole system. It takes a long time to reach real gravitational
equilibrium. However., we may understand the system assuming locally the system

is in equilibrium. The local osmotic pressure IT of colloidal fluid above the tem-

'We may miss the observation of stage I at this density mismatch.
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plated crystals determines the structure of crystals on the template. As the time
goes on the osmotic pressure of colloidal fluid above the template increases through
sedimentation. When II reaches surface freezing point, the fluid crystallizes on the
patterned substrate (either on the waffle template or on the crystal facet) as a com-
mensurate crystal. When the osmotic pressure of colloidal fluid is higher than the the
osmotic pressure of commensurate crystal and also overcomes the interfacial energy.
they crystal turns incommensurate structure with higher volume fraction in order to
maintain the mechanical balance from pressure above. At the end the planar hexag-
onal structure is the most stable structure under high osmotic pressure with gravity.
This can be confirmed from local volume fraction measurement. ¢ is between 50-54%
for stage (I), 54-38% for stage (II) and more than 60% for stage III. The crystal
osmotic pressure must balance the pressure from the fluid to maintain the structure
(Fig. 2.10). The lower volume fraction of commensurate crystal than bulk freezing
point 54.5% suggests that a surface induced phase transition happens on a patterned
substrate[17, 148].

We examined the correlation function and the ratio of the interparticle separation
d in one plane to the interplane separation h (Fig. 5.12) to have more quantitative
measures on the crystal structure. Fig. 5.18 shows that g(r) of the commensurate
crystal (stage I) on the template is close to FCC crystal instead of BCC. However,

we have data showing the other way which may suggest there exist a range of body
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center tetragonal (BCT) crystal under different conditions. However, a more accurate
z calibration is necessary to determine the exact structural relation.

We also add polymer into the system to induce the attraction between particles.
The polymer increase the osmotic pressure of the system and accelerates the crys-
tallization process. However, h/d = 0.62 is close to BCC ration when 0.2 mg/ml
polystyrene of m.w. 3,390,000 was added. The depletion interaction decrease the
interplane spacing. Fig. 5.15 shows the position of particles on xy plane and xz plane

of stage II crystal. Particles lose their registry from one layer to another.

5.7 Conclusion

To conclude, we have reported on a rich variety of 2D self-assembly phenomena gener-
ated by varying colloidal composition, addition of polymers. and engineering entropic
surface potentials. The combination of depletion attraction and a simple. robust sur-
face templating scheme provided a qualitatively new route for controlled colloidal self-
assembly in 3D. Since the entropic techniques used here are not restricted to micron
size particles, the underlying principles should be applicable on smaller, macromolec-
ular length scales. The preliminary results of 3D assembly on BCC-like templates
show interesting crystal growth dynamics. A better understanding of the relevant

parameters for crystal growth can open the possibility of novel crystal structures.
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Figure 5.12: The comparison of particle spacing between FCC and BCC crystals.



145

a Stage | - Commensurate Crystal

Figure 5.13: Three stages of crystal formation observed: (I) at lower ¢ a crystal
commensurate with the template; (IT) at intermediate ¢ a crvstal with square sym-
metry with smaller interparticle separation; (III) RHCP structure formed above the
template.
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Figure 5.14: The positions of all the particles of a crystal at stage [ projecting onto
xy and xz plane. Particles from different layers are commensurate with each other
well.
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Migure 5.15: The positins of all particles of a crystal at stage Il projecting onto the xy
plane and in the xz plane. In (b) the particle positions have slight shift from original
lattice because dislocation line in Fig. . The circled region showed the positions off
from the commensurate lattice.
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Figure 5.16: (a) silica particles nucleate on a BCC template for the first layer. (b)
silica particles packed in hexagonal structure at higher layer.

Figure 5.17: Experimental data for three different stages.
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Figure 5.18: The correlation function of the BCC-like crystal compared with simu-
lated FCC and BCC crystals.



Chapter 6

Conclusion and Future Work

In this thesis we have focused on the entropic effects in colloidal suspension. In par-
ticular we have measured the interaction between colloidal spheres in rod suspensions
and observed phases of colloidal spheres on patterned surfaces.

The measurements of depletion interactions between spheres in rod-like molecule
suspensions have demonstrated the strong geometric dependence of entropic inter-
actions. The experiments are the first direct measurements of these effects. We
have verified YJM theory in non-Derjaguin regime. When the sphere diameter is
comparable to the rod length, the magnitude rod depletion interaction is reduced
significantly from the model calculated based on Derjaguin approximation. We also
saw clearly that the rod-induced depletion potential is distinct from sphere-induced
depletion potential both in magnitude and in shape. The attraction energy ~ 1 kgT
between 1 um spheres can be induced by thin rods at ~ 0.01% volume fraction while

require volume fraction of spheres at ~ 3%. We found further that flexibility of the
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rods modified the interaction potentials from the rigid rod depletion potentials. We
constructed few modified models to explain the subtle but non-negligible discrepancy
between data and YJM theory. We were able to attribute the short range discrepancy
to the extra axial rotational degrees of freedom of bent rods. We compared the data
to the bent rod theory developed by Lau [29] which accounts for the extra short range
effect. The YJM-L model provides excellent agreement with experimental data and
results in a surprising conclusion that the persistence length of fd virus is two or three
times smaller than the commonly known value of 2.2 ym. In addition to testing the
depletion interaction theory, this measurement can provide a new route to determine
the persistence length of rod-like molecules.

The unexplained repulsion and bridging interactions due to fd sticking on the
spheres are intriguing. If we can control the sticking process, the origins of interac-
tion can be better explored and explained. From the repulsion measurement, we can
understand steric interaction due to rod-like molecules. From the bridging measure-
ment, we may also use it to measure the bending rigidity.

The assembly experiments demonstrated that the combination of grating tem-
plates with colloid/polymer mixtures provides rich and intriguing systems to investi-
gate physics in different dimensionality. The 1D fluid on the groove may be engineered
into channels. The ordered liquid structures on line gratings may be annealed into 2D

solid. It is unknown whether 2D systems with the attractive potentials exhibit the
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induced freezing by 1D periodic potential. Fundamentally this is an interesting ques-
tion. If annealing can be achieved, it can be a versatile template with quasi-long-range
order. Can we grow 3D crystal on such a template? Will it exhibit quasi-long-range
order? One-dimensional periodic structures are more easily engineered or found in
nature at smaller length scale. For example, lithography nowaday can achieve nm
resolution. Co-polymer or lipids can also self-assemble into ripple phase of nm peri-
odicity. These provide templates for nano-particles such as quantum dots or proteins.
The preliminary work done by A. Michelman achieved annealing by applying mag-
netic field with dilute ferrofluid in solutions. The peaks of structure function appear
sharper with time which means that more ordered structures are formed.

We observed particles sedimented onto FCC(100) templates of lattice spacing
d = 1.150 (o is the hard sphere diameter). The crystal formed at ~ 50% volume
fraction. lower than the bulk freezing point 54.5%. As the osmotic pressure near the
template increased. we observed commensurate-incommensurate transitions on the
patterned substrate. The systems are not in true equilibrium however which makes
it difficult to measure system’s pressure equation of state. Qur data showed that
the equilibrium phases mainly depend on the osmotic pressure. Experiments to in-
vestigate the dependence should have have density-matched samples with different
volume fractions around the liquid-bulk transition point. There are many interest-

ing questions to address: First, the surface-induced freezing point and the critical
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height of freezing layers is a function of lattice spacing. Second, the commensurate-
incommensurate transitions is a function of osmotic pressure given a lattice spacing.
How is the transition height changed with the osmotic pressure? How do the misfit
location lines form and propagate? Third, what is the nature of the interface be-
tween bulk/fluid? Is it rough or smooth? Is there a roughening transition pressure
I in hard sphere systems? What is the nature of this transitions? How will gravity
change the roughening? Fourth, how will the systems evolve differently by adding non-
adsorbing polymers? Addressing these questions helps to understand the influence of
patterned walls on bulk crystal growth. It provides key information for controlling
crystal growth process which promises large single crystals. The template-directed
crystals also allow the study of different crystal facet. More direct applications in
technology and interesting scientific questions will be opened up by single colloidal
crystals.

Colloidal systems have been compared to atomic systems. Bulk phases of colloidal
systems such as gel, glass, or phase transitions have been studied a lot. Yet there
are many interesting phenomena on the surface or at the interface. Combinations of
patterned surfaces with colloidal systems can be compared to surface science which is
a rich and important discipline in atomic science. We have already addressed many
interesting and specific questions for equilibrium behaviors. In the following we would

like raise more open possibilities from surface science.
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One main focus in surface science is to study crystal growth. Crystals can be grown
from a solution, from the melt, from the vapour, and under ultra-high vacuum with
techniques like molecular beam epitaxy (MBE) [6] and the growth depends on many
parameters: wetting between substrate-adsorbate, commensuratibility, interparticle
interaction, temperature, and volume fraction in the bulk. There are few different
types of heterogrowth. For example, when lead is deposited on graphite (Fig. 6.1a),
it forms droplet-like structures such as water droplets on a frving pan. This is called
the Volmer-Weber (VW) type of growth. In the other limit, rare gases adsorbed
on graphite form monolayers, and eventually well-spread mulitilavers. The xenon
equilibrium coverage is a step function of the pressure or of the chemical potential.
This is called Frank-van der Merwe (FM) mode growth. One often observes an
intermediate type of growth, called Stranski-Krastanov (SK) mode (Fig. 6.1b). The
adsorbate grows laver-by-layer for a while, then it forms droplets, as in VW. We
observed both FM and VW-like of crystal growth mode on different flat substrate due
to the wetting of colloids to the substrate (See Fig. 6.1c and d). The theory of growth
from dense phases is complex which takes into account of mass and energy transport
and hydrodynamics. The capability of real-time observation on colloidal systems in
dense phases may bring new information into this field, such as as determining the

scaling exponents of kinetic roughening [81].
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Figure 6.1: (a) V-W type of growth (Pb on graphite). (b) SK type of growth (Pb on
Ge(111)). (pictures reproduced from [6]) (c) VW type of growth in colloidal solutions
on optical glue. (d) FM type of growth in colloidal solution on clean glass.



Appendix A

Wormlike Chain Model

A central quantity to describe the conformations of a single polymer chain is the
distribution function G(r; L) of the end-to-end distance r for given contour length
L and persistence length ¢, which is the characteristic length describing the decay
of tangent-tangent correlations. G(r; L) represents the probability density of finding
any two monomers at relative position r = r(s) — r(s’) where L = |s — §'| is the dis-
tance between the monomers along the chain. For a very flexible polymer (L >> ¢,)
G(r: L) is described as a free-jointed chain. The physical properties of such polymers
is dominated by the large number of chains (thus entropy kg7 and well approxi-
mated by a simple Gaussian [149]. For a semiflexible polymer (L ~ ¢,) the bending
elastic energy between chains is comparible to the thermal energy kgT and thus the
energetic suppression of configurations available to the chains should be considered.
The corresponding model is the wormlike chain (WLC) model introduced Kratky and

Porod in 1949 [150] who solved the exact expression for second moment of (R?). The
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t(s)

Figure A.1: r(s) is the position of a point on the curve and t(s) is a unit tangent
vector at point r(s).

analytical expression G(r: L) of WLC is solved by Wilhelm and Frey in 1996 [128].
In the wormlike chain model the polymer is represented by a differentiable space
curve r(s) of length L parametrized by arc-length s shown in Fig. A.1. Its statistical

properties are determined by an effective free energy:

kL [at(s)]’
E—§/0 ds[ = ] : (A1)

where t(s) = Or(s)/0s is a unit vector tangent to the chain and x is the bending
force constant with the unit [energy]/[length]. The configurational partition function

Z(t.s) of the polymer is thus given by Boltzmann distribution for this energy:

Z(t.s) = /d{t} exp I:—g/OL ds (%)-l (A.2)

where the integration over all possible configurations of the chains. Actually this

partition function A.2 have the same form of the path integral for a free particle.
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Therefore. Z readily satisfies a free particles Schrodinger-like equation:

2 <xviz (A3)

with A = kgT/2k.
The inextensibility of the chain is expressed by the local constraint Il:(s)l2 = L.
This translates the free particle diffusing on a unit sphere; thus Z satisfies:

0z

= = \L2 A4
o =\L*Z (A4)
where L is the angular momemtum.
The quantity we are interested is:
(L) = r(O)F) = [ds [ ds'(8(s) - +(s)) (4.5)
0 0

But (t(s)-t(s')) = (t(s — &) - t(0)) = (cosf(s — s')). If we fix one end of the
filament defined as z-axis, the free end is described by angle # and ¢. The tangent
vector correlation function (t(s)-t(0)) = (cos @) can be calculated:

[}, d(cos8) cos@ Z(cos¥.s)
I, d(cos @) Z(cos 8. s)
d{cosf(s)) [l d(cosf) cosf A L2 Z(cos#b. s)
ds B I, d(cos8) Z(cosb. s)

(cos8(s))

(A.6)

Because L? is a Hermitian operator, L2cos@ = (D — 1) cosf, where D is the dimen-

sionality of space. Therefore in 3D,

~~
?>
=]
o ——g

(cosf(s)) = e~
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and the persistence length ¢, = %\ The mean squared end-to-end separation can be

calculated as follows:

([r(L) - r(O))?) = [)L ds /OL ds’ ( cos(0(s) — cosb(s') )

L
= /Lds/ ds' e7ls=1/t
0 0

L s , L ,
= / ds / ds' e~ (=)t -+-/ ds' e~ =9/
0 o s

= 2L, +28 (7% —1) (A.8)

The two limiting cases are: (i) L > ¢, (the random coil limit), ( R?) = L¢,/2.

(ii) €, > L (the rigid rod limit), ( R?) = L.
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